ICSNC/INNOV Panel on

Trusted and Scalable Systems and Services: Challenges
Trusted and Scalable Systems and Services: Challenges

• Panelists:
 – Eugen Borcoci, University Politehnica Bucharest, Romania
 – Sung-Soon Park, Anyang University/Gluesys, Republic of Korea
 – Marta Piekarska, Blockstream Inc.
 – Burjiz Pithawala, Huawei Technologies, USA

• Moderator:
 – Jorge A. Cobb, U. Texas at Dallas, USA
Scalability issues in new technologies - SDN and NFV
SSD based technology for High Performance Storage Area Networks
Dr. Marta Piekarska
Blockstream Inc.

Fast Transactions on a Block Chain
Burjiz Pithawala
Huawei Technologies, USA

Application Demands that Dictate scale for
Cloud and Edge computing
Dr. Eugen Borcoci is professor at University Politehnica of Bucharest (UPB) in the Telecommunications Department. His teaching and research have been oriented to specific domains of telecommunications and computer networks architectures technologies and services like: communication protocols and signaling systems, quality of services assurance and management over multiple domains networks, multicast and multimedia services over IP networks and heterogeneous access.

(continued) . . .
Recently, his research interests and activities are on new architectural approaches like Content Aware Networking, Cloud computing and 5G, Information Centric Networking, Software Defined Networking (SDN), Network function virtualization (NFV).

Dr. Borcoci is a IARIA fellow
Dr. Sung-Soon Park is a Professor in the Department of CSE at Anyang University.

Major Research interest areas are
- Parallel File Systems
- Storage System Software
- Cloud Computing

He is also the Founder, CEO, and President Gluesys Co. Lt, which is the leading NAS company in Korea.

Gluesys has expanded beyond the domestic market into foreign markets such as Singapore, Malaysia, and Vietnam with its corporate NAS solutions and shipped its personal NAS solutions to the USA, Europe, and Japan,
Dr. Marta Piekarska received her Doctor of Philosophy degree in Computer Science from the Technical University of Berlin.

She is a Security Engineer, Privacy Expert, and Technical Manager.

She was Chief Engineer in Mobile Privacy at T-Labs, Telekom Innovation Laboratories.

She is currently with Blockstream Inc., which was founded to develop new ways to accelerate innovation in crypto currencies, open assets and smart contracts.
Burjiz Pithawala is a recognized technology and business leader in IP Network Systems & Technologies. Burjiz has built many embedded system networking products from hardware to software and has been at the forefront of developing many of the Internet routing and switching protocols that are deployed in the current Internet.

As VP/CTO of Huawei Systems, Burjiz’s interests include leading the architecture and development of the next generation Internet that facilitates a new set of demanding applications like Augmented/Virtual Reality (AR/VR), Fog/Edge Computing, IoT analytics and 5G Mobility.
Security & Trust Challenges in Large Scale Networks

Burjiz Pithawala
VP/CTO, Future Networks
burjiz.pithawala@huawei.com

August 2016

HUAWEI TECHNOLOGIES CO., LTD.
Security should be built as part of Network DNA

Security is more than encryption. It should prevent
- Malicious users
- Malicious traffic flows
- Route hijacks
Security Paradigm Today

- Virtualization has removed the need for only Perimeter Security
- Zero Trust Security Concept in deployment today at low to medium scale
 - Security enforced at all layers of machine, app, virtualization across systems within a domain
- Lockheed-Martin Cyber Kill Cycle deployed with Zero Trust in most Cloud networks
 - This included Micro-segmentation as preached by Vmware.
 - Concept is great but implementation is slow for large scale systems.
- Key Management is still an Enterprise responsibility
 - Need Cloud scale management from a cloud systems (AWS starting to provide it now).
Security Challenges for 2020

- Large (very) scale systems
 - Grid, Medical, IoT are creating really large databases
 - Developing High Availability and Security systems needed
 - Most systems depend on some form of COTS but HA is missing in most OpenSource systems. Hence HA becomes proprietary.
 - Zero Trust Concept difficult to implement in large (east-west) traffic systems. Hence new models of Zero (or nearly Zero) Trust need development

- Traffic Visibility
 - 80% Traffic is going to be encrypted
 - Balance between privacy v/s information for most companies and countries
 - New Traffic Visibility (Heuristic) Apps for determining traffic mix
Security Challenges for 2020

- **Large Scale Security Policy enforcement**
 - Firewall policies too complex
 - Virtualization demands detailed app/user policy at every lateral boundary
 - Balance between software implementation and hardware acceleration
 - Microsegmentation in Virtual Switches (NSX, OVS, FDD) not scaling to large scale of apps and users
 - **Policy definition using ID – should scale better than IP addresses/sockets**
 - **Policy enforcement using ID in Virtual Switch with some hardware acceleration should be the way forward.**

- **Cloud scale Key Management system**
 - IoT is part of this scale challenge
 - Key rotation adds to the issue
Security Challenges for 2020

- **Cloud scale Key Management system**
 - Key Creation + Key Distribution + Key Storage at cloud scale is a massive problem today
 - Some companies trying different solution (AWS, Covata, Centri etc)

- **Data Center Security Architecture**
 - New paradigms needed for east-west security architecture
 - New paradigm needed for public-private (hybrid) operation for Enterprise
Thank you

www.huawei.com
FAST TRANSACTIONS ON A BLOCKCHAIN
IT IS IMPOSSIBLE.
Why?
Why?
Why?
Why?

REORGANIZATION

DISTRIBUTION

CONSENSUS
IT IS SLOW.
LACK OF LIQUIDITY.
LACK OF PRIVACY.
USING STRONG FEDERATIONS FOR FASTER BLOCKCHAIN TRANSACTIONS
MARTA PIEKARSKA

Blockstream Inc.

marta@blockstream.com
+14159608938
Panel on ICSNC/INNOV
Topic: Trusted and Scalable Systems and Services: Challenges

Scalability problems in Software Defined Networking and Network Function Virtualization technologies

Eugen Borcoci
University Politehnica Bucharest
Electronics, Telecommunications and Information Technology Faculty (ETTI)

Eugen.Borcoci@elcom.pub.ro

SDN, NFV – scalability challenges

- **SDN – novel approach for networking control**
 - strong support from industry
 - SDN – applicable in Clouds, WANs, IoT, vehicular, 5G

- **SDN concepts and advantages:**
 - Control Plane (CPl) and Data Plane (DPl) separation
 - *centralized logical control and view* of the network
 - underlying network infrastructure is abstracted to applications
 - common APIs (northbound I/F)
 - Open I/Fs Southbound I/F CPl (controllers - DPI elements)
 - E.g. OpenFlow
 - **Network programmability:** by external applications including network management and control
 - **Independency of operators** w.r.t. network equipment vendors
 - Increased network reliability and security

Softnet 2016, Rome, August 21-25, 2016
SDN, NFV scalability challenges

SDN Basic Architecture

- **Network OS:**
 - Distributed system that creates a consistent, updated network view
 - Executed on servers (controllers) in the network
 - Eg.: NOX, PoX, ONIX, HyperFlow, Floodlight, Trema, Kandoo, Beacon, Maestro,..

- **SDN controller uses forwarding abstraction in order to:**
 - Collect state information from forwarding nodes
 - Generate commands to forwarding nodes

Network Function Virtualization: concepts and advantages

- Main actor ETSI,
- Using COTS computing HW to provide **Virtualized Network Functions (VNFs)** through **SW virtualization**
 - Sharing of HW and reducing the number of different HW arch.

- High flexibility in assigning VNFs to HW
 - better scalability (hope)
 - decouples functionality from location
 - enables time of day reuse
 - **Virtualization** - flexibility and resource sharing

- Rapid service innovation through SW-based service deployment

- Common automation and operating procedures ⇒ higher **operational efficiencies**

- **Reduced power consumption**
 - (migrating workloads and powering down unused HW)

- **Standardized and open I/Fs**: between VNFs infrastructure and mgmt. entities

SDN,NFV- scalability challenges

- NFV vision (source: ETSI)

Classical Network Appliance Approach

- Message Router
- CDN
- Session Border Controller
- WAN Acceleration
- DPI
- Firewall
- Carrier Grade NAT
- SGSN/GGSN
- PE Router
- BRAS
- Radio Access Network Nodes

- Fragmented non-commodity hardware.
- Physical install per appliance per site.
- Hardware development large barrier to entry for new vendors, constraining innovation & competition.

Independent Software Vendors

- Orchestration, automatic & remote install.
- Standard High Volume Servers
- Standard High Volume Storage
- Standard High Volume Ethernet Switches

Network Virtualisation Approach

NFV, SDN – are complementary
- NFV + SDN - architectural example

Source: “SDN and OpenFlow World Congress”, Frankfurt, October 15-17, 2013
SDN, NFV - scalability challenges

- Why SDN scalability-related concerns “”?
 - Vertical scalability - apparently – no major issue
 - Horizontal scalability - it still a problem

- Centralized control plane (at least logical)
 - Signaling overhead (forwarders <-> controllers)
 - Central controller limitations: not scale for large networks (no. of switches, flows, bandwidth, etc.)

- Initial SDN concepts: no control communication between forwarders → the power of a distributed system is partially lost
 - Single controller - > single point of failure

- CPI/DPI decoupling issues
 - Need standard API between Cpl/DPI - to allow their independent evolutions - not so simple
 - Switch manufacturers should adopt the same APIs (compatibility reasons)

- Current status? - no unanimous opinions w.r.t. SDN scalability solutions
 - Optimistic, Pessimistic, …

Potential solutions proposed to solve the SDN scalability:
- (however, no unique solution can be universally adopted)
- **Direct solutions**
 - Increase controller processing power
 - Increase switch processing power
- **Aggregation of rules**
- **Proactive installation of rules**
 - Problems: no host mobility support, not enough memory in switches
- Delegate (come back…) **more responsibilities to the data plane**
 - [e.g. Diffane, DevoFlow, …]
- **Distributed controllers** (need inter-controller communication)
 - Placement of controllers – open research issue
 - Flat structure - multiple controllers [e.g. ONIX, …]
 - Recursive controller design [e.g. Xbar, ..]
 - Hierarchical structure - multiple controllers [e.g. Kandoo, ..]
NFV scalability issues (partial)

- NFV needs to be acceptably scalable to high number (millions) of subscribers
 - Dynamic life-cycles of many NFV/VMs could be necessary
- NFV will only scale if all of the functions can be automated
 - Automation of processes is important in NFV
- Dynamic environments require that VNFs can be deployed and removed on demand and scaled to match changing traffic

Open research issues
- How to map VNFs onto VMs?
 - Fixed/variable, 1 to 1, or ..
 - VNFs Migration policies ..

- NFV need more study than just transferring carrier class NFs to the cloud
 - Need to adapt cloud environments so as to obtain carrier-class behaviour
Conclusions

- Scalability solutions for SDN, NFV- still in research focus
- Progress has been made in last years (both in concepts and also implementations)

Thank you!
SDN, NFV - scalability challenges

References

2. ETSI GS NFV 002 v1.2.1 2014-12, NFV Architectural Framework