
Challenges In Building Applications And
Services For Smart Devices

Moderator
Krishna Kavi, University of North Texas, USA

Panelists
Michael Gebhart, iteratec GmbH, Germany

Mira Kajko-Mattsson, KTH Royal Institute of Technology, Sweden
Sylvain Vauttier, Ecole Nationale Supérieure des Mines d'Alès, France

Faouzi Moussa, CRISTAL, Tunisia
Petre Dini, IARIA, USA

Challenges In Building Applications And
Services For Smart Devices

A General Framework for Discussion

a). Availability of Tools (and ease of use)

Tools for Development

Tools for Testing

Tools for Performance/Energy evaluation

Security/Reliability/Safety

Designing for Ergonomics and Usability

b). Security Related Issues

Testing for security

Integrating 3rd party codes

Updating against new security vulnerabilities

c). Creating A Market

Challenges In Building Applications And
Services For Smart Devices

A General Framework for Discussion

Other Issues

Interoperability

Programming languages and frameworks

Ever changing hardware capabilities

And Smart Devices span beyond Smart phones

Wearable and Implantable devices

IoT

Challenges In Building Applications And
Services For Smart Devices

My two cents worth (based on discussions with students and colleagues)

Per developing smart phone aps

Keeping up with the ever changing capabilities of devices and updating apps

Control over hardware capabilities (e.g., power management)

Cross platform development tools are becoming available, but often cumbersome

Interoperability is also an issue, if not in terms of functionality,

but in terms of performance

Philosophy behind different manufacturers (Android vs IOS)

Need more standardization

Challenges In Building Applications And
Services For Smart Devices

My two cents worth (based on discussions with students and colleagues)

Per developing smart phone aps

Testing for functionality is reasonably addressed

but not for security or performance/energy management

Xcode (IOS) is better for integrating with 3rd party libraries

Better support with Objective C (than Java)

Android is better with Java

Android has more relaxed attitude and thus may not be as secure

Challenges In Building Applications And
Services For Smart Devices

My two cents worth (based on discussions with students and colleagues)

”Making applications is easy, but securing them is very difficult” Immunio.inc

Create layers of protection around applications

Control access

Log activity (and monitor)

Sanitize inputs

Report vulnerabilities appropriately

Assess risks associated with third party and legacy applications

Challenges In Building Applications And
Services For Smart Devices

Michael Gebhart: Choosing the right paradigm: Native vs. Hybrid vs. Web apps.

Is it necessary to write native apps? Or is it sufficient to use web technologies and

frameworks?

Mira Kajko-Mattsson: Organizational, educational challenges: Method and competency perspective

Sylvain Vauttier: User empowerment for building smart environments with IoT technologies: Privacy,

Ethics and Interoperability

Faouzi Moussa: Designing context-aware User Interfaces while integrating ergonomic/usability rules

Petre Dini: Challenges in developing apps for wearable/implantable devices: Computation vs Sensing

processing requirement

A three-level versioning model
for component-based software architectures

Abderrahman MOKNI*, Marianne HUCHARD**,
Christelle URTADO* and Sylvain VAUTTIER*

*Ecole des Mines d’Alès, Nîmes, France
**LIRMM, Montpellier, France

ECSA’16 1

Outline

� Context: Dedal, an architecture description languag e for
reuse intensive development processes

� Managing the evolution of three-leveled architectur e
descriptions in Dedal

� Three-level versioning model for tracing the evolut ions of
architecture descriptions in Dedal

� Conclusion and perspectives

2ECSA’16

Context : reuse-intensive development processes

3ECSA’16

� Software product-line engineering

Context : reuse intensive development processes

� Component-based software engineering

4ECSA’16

Architecture
Configuration

Functional
requirements

Component
repositories

Architecture
Design

Architecture
Implementation

Architecture
Deployment

Architecture
Specification

Architecture
Assembly

Context : reuse intensive development processes

� Dedal: a three-level architecture description langua ge
• capture architectural decisions
• foster architecture description reuse

5ECSA’16

Architecture
specification

Architecture
configuration

Architecture
Assembly

<<implements>>

<<instantiates>>

<<realizes>>

<<instantiates>>

Component
role

Component class

Component instance

Context : reuse intensive development processes

6

� Example: Home Automation
System

Architecture
Specification

Architecture
Configuration

Architecture
Assembly

ECSA’16

Evolution of three-leveled architecture models in
Dedal

� Architecture maintenance
• prevent obsolescence

� Derive new architectures from existing ones
• agile/incremental development

� Problematics: inconsistencies, loss of architectura l
decisions

• Drift: architectural decision that does not violate higher level design
decisions

• Erosion: architectural decision that does not violate higher level
design decisions

� Solution: a disciplined evolution process…

7ECSA’16

Evolution of three-leveled architecture models in
Dedal

� Solution: … based on a formal metamodel
• written in B (first-order logic, set theory based formal language)
• formal definition of the relations between components on each

architecture description level (intra-level relations)
─ connection, specialization (substitution)

• formal definition of the relations between the different architecture
description levels (inter-level relations)
─ implementation, instantiation

• Derived from object type theory (Liskov 1993)

8ECSA’16

C
<<component>>

D
<<component>>

X X’

? Y

?

Evolution of three-leveled architecture models in
Dedal

� Example: implementation relations
• N-M relations between component roles from the specification level

and component classes from the implementation level

9ECSA’16

Light

ILight
powerOn() : void
powerOff() : void

ILum
setIntensity(int intensity) : void

Luminosity
<<component role>> <<component role>>

AdjustableLamp

ILamp
powerOn() : void
powerOff() : void

IIIntensity
setIntensity(int intensity) : void
getIntensity() : int

<<component class>>

<<implements>>

<<implements>
>

Evolution of three-leveled architecture models in
Dedal

� Example : implementation relation
• a N-M relation between component roles from the specification level

and the component classes from the implementation level

10ECSA’16

AirConditioner

IMode
setHeatingMode(HeatingMode mode) : void

Thermostat

ITemp
getTemp () : int

ITemp

ITemp
getTemp() : int

IMode
setHeatingMode(HeatingMode mode) : void

Conditioner

<<component role>>

<<component class>> <<component class>> IMode

<<component class>>

<<implements>>

<<delegate>>

<<delegate>>

Evolution of three-leveled architecture models in
Dedal

� A complex evolution process…
• Change initiation
• Local impact analysis (intra-level consistency

checking)
• Local consistency restoration (intra-level change

propagation)
• Global impact analysis (inter-level consistency

checking)
• Global consistency restoration (inter-level change

propagation)

� … hopefully assisted by a solver
• architectures definitions considered as state machines
• changes considered as state transitions
• automatic generation of evolution plans (sequences of

changes) that realize required changes and restore
local and global consistency

11ECSA’16

Architecture
model

Dedal
formal

metamodel

Evolution
Plan

input input

output

B Solver

Evolution
goal

(required
changes)

input

Three-level versioning model for architecture
descriptions in Dedal

� Requirements: manage a version space
• to store all the designed versions of architectures
• to trace all the architectural decisions that define architectures

(historic derivation relations)
• to handle the different semantics of derivation

─ revision: the new version of the architecture is intended to
replace source versions

─ variant: the new version is intended to co-exist with source
versions

12ECSA’16

v
4

v
1

v
2

v
5

v
3 v

6

v
7

v
8

v
9

Three-level versioning model for architecture
descriptions in Dedal

� Problematics: combining version space with architec tural space

13ECSA’16

Three-level versioning model for architecture
descriptions in Dedal

� Proposal: assisted versioning strategies
� Minimum derivation strategy

• Derive only the impacted architecture definitions
• Suitable for architecture variant derivation

14ECSA’16

S

.v1

c1

.v1

C2

.v1

C3

.v1

a11

.v1

a12

.v1

a21

.v1

a31

.v1

a32

.v1

S

.v2

C1

.v2

a12

.v2

Three-level versioning model for architecture
descriptions in Dedal

� Maximum derivation strategy
• Derive the whole architectural space
• Suitable for architecture revision derivation

15

s

.v1

c1

.v1

c2

.v1

c3

.v1

a11

.v1

a12

.v1

a21

.v1

a31

.v1

a32

.v1

s

.v2

c1

.v2

c2

.v2

a11

.v2

a12

.v2

a31

.v2

a32

.v2

a21

.v2

ECSA’16

Conclusion

� Dedal ADL and tools

• Capture architectural decisions
─ a three-level architecture description language

• Maintain architectural decisions
─ a disciplined and assisted evolution process

• Reuse architectural decisions
─ a semantic versioning model

� Future work
• formal definition of the derivation relations (variant, revision)
• formal definition of version space consistency properties
• automatic management of versioning (automatic consistency

checking and derivation)

16ECSA’16

Michael Gebhart

Hybrid vs. Native Apps

©
it

er
at

ec
©

it
er

at
ec

©
it

er
at

ec

› Android: 86.2%

› iOS: 12.9%

› Microsoft Windows: 0.6%

› Others: 0.3%

Mobile OS Market Share

2
3

.0
8

.2
0

1
6

2

©
it

er
at

ec

Native vs. Hybrid Development
Support for Android and iOS

2
3

.0
8

.2
0

1
6

3

Waldemar Britts
Accenture Digital

Sweden

Mira Kajko-Mattsson
KTH Royal Institute of Technology

Sweden

Challenges for Building
Applications and Services for

Smart Devices

Challenges

We need smart education
We need smart organizations
We need smart employees
We need smart methods

Smart education

 Education is not smart today.

 Educators cannot imagine what our future will be like in 20
years.

 Educators must choose a portfolio of subjects that prepare
students for work for at least 10 years ahead.

 Educators do not have all the competencies required for
teaching the subject portfolios.

 Help needs to be acquired from outside.

 The subjects’ needs will only increase.

 Students are not well prepared for developing applications
and services for smart devices.

Smart Organizations

 Constantly evolving organizations

 Highly innovative and productive mills

 More flexible and more competitive and still have
control over what they do and how they act.

 Encourage the development and improvement of
new devices and services.

Agile Organizations: Towards
Innovative and Highly Productive Mills

 Agile methods
 Idea generation and

productivization
 Spontaneous order
 Emergent adaptations

 Communication
 Continuous learning envir.
 Fluid roles and dynamic

decision making
 Management and co-ordination
 Organizational structures

Smart

Smart

Smart employee

There’s a new brand type of employee out there.
The Smart Creative.

Smart employee

 Smart creatives causes change.
 They do not hold back whenever they have an idea that can

improve the world.
 They always find solutions to major problems.
 They are not afraid to fail or try smth new.
 They make sure that their ideas are foolproof.
 They influence other employees and make them better.
 They bring fast-paced thinking and problem-solving.
 They find ways to work smarter.
 They reinvent the wheel while being original and forward-

thinking.
 Smart creatives come in all shapes and sizes. There is no

race, gender, sexual orientation, education.

Smart methods

What does cooking have to do with developing applications and
services for smart devices?

1

2016
ROME

PANEL on ICSEA 2016

Title: Challenges for Building Applications and
Services for Smart Devices

on
Comfort/Heat Computational Requirements

in
developing apps for wearable/implantable devices

Petre Dini, IARIA

WWW.IARIA.ORG

222
2016

Requirements for Software/Apps

GENERAL CONSIDERATIONS

• Centralized systems | hardware vs. software

• Distributed systems | hardware vs. software

• Real-time systems | embedded software

• Mobile systems | systems on the chip

• Wearable systems | systems on the chip

• Implantable systems | systems on the chip

• Body systems | cyberman

• Requirements Systems Testing and Validation

• Mobile/Wearable/Implantable Human Behavior/ Body Features

333
2016

Specifics of requirements for Apps

• Standardization and methodologies

Screen Sizes

API for many OSs

• Special considerations for Requirements, as Humans are heavily involved

• Classical: functional / non-functional

• Specific for Apps: functional / non-functional / comfort-requirements

Thermal considerations

Material and environment [moisture/humidity/cold, human body reactions,

isolation]

Testing [human-in-the-middle]

444
2016

Thermal considerations

• A specific aspect is that wearable devices introduce some unique thermal
design challenges that should be considered for devices, Apps and the
entire system. This is not only referring to operability, but also to a required
comfort level for humans. This design challenge is mainly for processor
intensive applications and units with complex displays.

Heussner, D. Texas Instruments, USA
http://electronicdesign.com/digital-ics/wearable-technologiespresent-packaging-challenges

555
2016

Cyberman

666
2016

Computation/communication/heat issues

Comfort requirements

• Esthetic (color, size)

• Shape (form, fitting)

• Attachment status (mandatory, removable)

• Heat-related (computational, device-material, ambient)

Heat comfort requirements

• Process intensive applications

• Complex display

• Fast data communication (health hazards, alarms, critical applications)

Testing-for-Real on the above is mandatory

• As wearable devices are quite specific, simply substituting them with
emulators is not suitable; as the discipline is evolving in a rapid pace, trusting
the results of such emulator is doubtful.

777
2016

Solutions and Challenges

SOLUTIONS

• #1 Monitoring the heat on a wearable/implantable device

• #2 Forward intensive executions when a heat threshold is reached:

- To an idle body devices (for cyberman)

- To a remote server

• #3 Brig back computation, when comfortably acceptable

CHALLENGES

• Different mobile devices need different user interfaces. With regard to screen size,
automated GUI generation with automated tailoring may become an option.

• What is specific on designing and testing wearable devices and Apps is that user
experience is more relevant than in traditional approaches.

• “It is a challenge to develop and test very specific features; e.g., “smart watches
have very small screens and almost no buttons, making the use of space,
navigation and user interaction incredibly important””

888
2016

WWW.IARIA.ORG

Thanks

Qs

