SLA-constrained Feedback-based Software Load Distribution Algorithm that Minimizes Computing Resource Requirement

S.R. Venkatramanan (PayPal) Rema Hariharan and Ashok Murthy (eBay)

Agenda

- Business Background
- Conventional Routing in the Cloud
- •New algorithm
 - -Principle
 - -Description
 - -Implementation Results
- Discussion

- •The world's online marketplace
- •eBay is a global commerce leader; connects millions of buyers and sellers around the world
- Facilitators for online sales.
 - Sold items range from broken pens to multi-million dollar homes and more.
 - -Auction + Fixed price
- •One of the largest data warehouses.

eBay BUSINESS

Money is changing

Mass Adoption of Mobile Devices

Digitization of Cash

Transformation of Cards

Fragmentation of Payment Types, Technology and Channels

\$

Rise of Fraud and Cybercrime

Our international footprint

79%

Of shoppers in key markets, 79% used PayPal for a cross-border transaction between June 2012 and June 2013. In 2014, 94 million people shopped with PayPal across borders in key markets.

94M

\$300B

In key markets, crossborder trade is expected to pass \$300B in 2018.

Source: Modern Spice Routes, PayPal and Nielsen, July 2013 https://stories.paypal0corp.com/uploads/4/8/9/8/48984695/paypal_modernspi ceroutes_report_final.pdf Key Markets: US, UK, Germany, Brazil, China and Australia

Why Cloud?

Infrastructure and platform lifecycle management

•Ease of Operations

- -Monitoring and Remediation
- -Metrics and Analysis

Capacity management

- -Improved resource utilization
- -Quick Flex up/down

Topology

Routing in data center

Layers

Challenges

Heterogeneous hardware

Virtualization hazards

- -Noisy neighbors
- -Sharing/Stealing of resources

•Platform Integration

- -No Standard metrics
- -Need to be normalized

Capacity nightmare

- -Scalability
- -Predictability

Traditional Capacity Planning

- Metrics from lab test
- Sometimes from live production
 - -Data available only for the operating range
- •Extrapolate this for future anticipated traffic
- Doesn't take scalability into consideration
- Potential under-provisioning leads to high transaction response times

Canary - 1

Red Canary

- -Always DR level traffic
- -Eventually will lead to right size
- -Fixed size hardware in cloud environment
- -Inevitable wasted capacity
- -Utilization profile of canary vs. regular machine

AutoStress tool – characterize the application

Canary - 2

Brown Canary

-Application characterization

-Auto-stress tool to scale this step of process

-More accurate estimate of Max throughput

Application characteristics change over timeInevitable wasted capacity

Utilization profile

- Utilization percentage on VM
- •Relative to capacity
- •Estimate of percentage of capacity wasted

Two Alternatives

•Pre-determine number of machines needed and send traffic to all machines equally.

- -All machines will be almost equally utilized.
- -Hard to tell when to add a new machine.
- -Machines may be heterogeneous.

•Send traffic to machines in an ordered way.

- -Send traffic to machine 1, send to machine 2 when 1 saturates, etc.
- –Unequal usage but when traffic reaches last machine, add capacity.

New Idea

- •Send all traffic to minimum number of machines.
- •Use response time metric as feedback.
- •When response time worsens, add machines.

Typical Traffic Pattern

How the flow works – Node Selection

Core of the algorithm

Core of the algorithm

Core of the algorithm

How the flow works – at each node

26

Degraded Operation to accommodate bursts

Well behaved load

Inadequate capacity in-time – Degraded response time

Extension to Heterogeneous environment

How to create groups?

Comparisons by command type

	Median			P95			Count
Command	Target	Ref	T-R in %	Target	Ref	T-R in %	Ref
AdvS	123	109	12.84	262	238	10.08	3892
AIID	103	112	-8.04	208	218	-4.61	5540
ChsM	457	459	-0.44	1228	1028	19.44	8960
Cust	43	39	10.26	138	138	0.00	1206
FavS	19	222	-91.44	106	417	-74.47	1010
FndH	637	613	3.92	2236	2881	-22.37	43
FndM	90	96	-6.25	1098	5315	-79.34	593
GetC	76	75	1.33	76	75	1.33	1
JsDi	569	559	1.79	1054	1066	-1.11	11625
Prev	163	160	1.88	260	242	7.44	722
RecC	363	368	-1.36	517	544	-4.96	82951
SvSD	320	322	-0.62	549	558	-1.61	273873
SePr	477	477	0.00	682	686	-0.45	1631
SRPR	679	676	0.44	1400	1432	-2.23	1444307
SRSS	560	561	-0.18	1111	1170	-5.04	200592
SelO	585	579	1.04	1060	1059	0.09	62547
Siml	575	583	-1.37	915	985	-7.11	131498
V4Aj	244	104	134.62	323	196	64.96	4
Vero	832	750.5	10.86	2830	907	212.14	2
ZipP	44	42	4.76	96	71	35.21	426
TOTAL							2231423

Thank you!!

Now, Open for Discussion

The power of our platform

Our technology transformation enables us to:

- Process payments at tremendous scale
- Accelerate the innovation of new products
- Engage world-class developers & technologists

PayPal