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Single image super-resolution (SISR)

aims to recover a high-resolution (HR) image X €& RNn
from a low-resolution (LR) input image y € RN

y = DBx+n

D: RV» — RNt{(N;, < Ny,) is the downsampling matrix
B: RVh — RMh is the blurring matrix

n € RV is the additive noise

The SISR problem is typically severely ill-posed!



Single image super-resolution (SISR)

y =DBx+n

If B is the identity, then SISR reduces to the Image
interpolation.

Most SISR cases assume B is known or predefined:

® Gaussian blur [Begin and Ferrie, 2004]

® Bicubic interpolation (Bl) [Glasner, et al., 2009; Yang, et al., 2010]
® Gaussian blur followed by Bl [Freeman and Liu, 2011]

® Simple pixel averaging [Fattal, 2007]



Two important works

® An accurate blur model is critical to the success of SISR
algorithmsiefrat et al., 2013]

® The PSF of camera is the wrong blur kernel from the LR
image [I\/Iichaeli and Irani, 2013]

Both seek accurate blur kernels based on existing SISR
algorithms, thus their complexisties are even more
than those of the SISR ones.



Single blind image super-resolution (SBISR)

y =DBx+n

If B is unknown, then SISR becomes the single blind
image super-resolution (SBISR).

Only a few works dedicated to the SBISR problem, have
restrictive assumptions on the blur kernel:

® A parametric Gaussian model with unknown width
[Begin and Ferrie, 2004; Qiao, et al., 2006; Wang, et al., 2005]

® Multiple parametric models [He, et al., 2009}
® A nonparametric model assuming the kernel has a
single peak [He, et al., 2009]



In this paper

We address the SBISR problem via a blind image deblurring (BID)
method, bridge the gap between SBISR and BID, benefit from
that some BID methods are arguably faster and easier to
understand, than state-of-the-art SISR/SBISR methods, and
reach competitive speed and restoration quality.



SBISR and BID

SBISR:
recover a HR image X € RY% from a LR image V € RN

y =DBx+n

D: RVr — RNI(N; < Ny,) is the downsampling matrix

B: RVr — R % js the blurring matrix
n € RV is the additive noise

BID:
recover a sharp image X € RN from a blurry image Z € RVA

Z = BX+s

B: RY2 — RN js the blurring matrix
s € RMn is the additive noise 7



SBISR and BID

With the same B and X
BID: Z=Bx+s—Bx=z-—s
U
SBISR: y =DBx+n
U
y=D(z—s)+n
= Dz + (n — Ds)

Due to the introduce of D, the length of y is less than that of z,
namely, y has fewer known samples than z.

we can solve the SBISR problem in an easier way via reformulating
it into a BID problem. ’



Reformulating SBISR into BID

SBISR: y =DBx+n
The idea is to first interpolate the LR imagey € RV as u € R~

u = Uy = UDBx + Un
U: RVt — RN js the interpolation operator
(e.g. bicubic or bilinear)

The resultingBID: u=Kx+ e

K = UDB: RYr — R" % js the new blurring matrix
e € RV is the interpolation of n

Instead of super-resolving X from y, the HR image can be obtained
via blind deblurring x from u. 9



The resulting BID problem
The regularization problem

e . A
(X, k) = arg n;}(ni IKx — u||% + ¢pgrv(X) + ts(K)

barv() = ) I[Duxl[? +[[D,x]P,0 < p < 1

D; and D;, denote the horizontal and vertical derivative
operator, respectively.

Ls is the indicator of the set & which is defined as
§=tkk >0kl =1}
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The algorithmic framework

Algorithm Proposed algorithmic framework

1.
2.
3.

4,

Input: Observed LR image y, A and o > 1.
Step I: Interpolate y via u = Uy.
Step II: Blind estimation of blur filter k from u, by
alternative loop over coarse-to-fine levels:
» Update the image estimate

X ¢ argmin = |Kx — ul|2 + ¢ory(x) (8)

where K is the convolution matrix constructed by k
obtained from the blur filter estimation below.
» Update the blur filter estimate

k « arg min b IXk — ul|2 + ts(k) 9)

k

where X is the convolution matrix constructed by x
obtained from the image estimation above.
» Increase the parameter A

A\ — al. (10)

Step III: Non-blind estimation of HR image x* from u
through solving (8) with final k (obtained by Step II).
Output: the HR image x* and the blur estimate k.

Can be efficiently
solved by alternating
direction method of
multipliers (ADMM)
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The alternating direction method of multipliers (ADMM)
[Gabay and Mercier, 1976; Boyd et al., 2011; Almeida and Figueiredo, 2013]

ADMM has been as a popular tool to solving imaging inverse problems

J
Ingnzgj(B(j)x) (11)
J

Algorithm ADMM for solving (11)
. Setk=0,8>0 v o v . ... dl.
2. repeat | |
. -1
4 Xk+1 = [Z'jj_l(B(”)TB(J)} I
5. fOl’j.:]_’---,J )
6 V&)l = ProXy, /- (BU)XA-H - dﬁj‘))
7 di) =dy) — (BUx,, —vi))
8 end for
9
1

. kE—Fk+1
0. wuntil some stopping criterion is satisfied.
In line 6 of above algorithm, the proximity operator of

gj/T: Prox,, ,, is defined as

Prox,, /- (v) = arg min (gj (x) + % |x — VHQ) . (12)
* 12



X update using the ADMM

X ¢ arg m}in%”f(x — |3 + dery(x)
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Algorithm ADMM for solving (8)

1
2
‘;
4.
5.
6
7
8
9

10.
11.
12.

13.
14.

Initialize k = 0, 7, > 0, vi" v{? vi?, al af? af?.
repeat

O L g

S dy
§2) o
’ —ka—I-d3I

r;L—KTz,L +DIz? + DIzY B
xi1 = [KTK + DD, + DID,| 1
vg,_l_gl = Proxg, /7, (kaﬂ — di,lI)

4y = i = (Kxer = vl

V,(jzl = Prox,, /-, (thk+1 — df))
dIc2-|Il = dIcz) — (DnXp41 — VI?-IIlI

il = Posg o, (Do - o)

dfil = d(g) (DeXpq1 — vl(ile
ko k+ 1

15. until some stopping criterion is satisfied.

(8)
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Kk update using the ADMM

k < arg mm —||Xk —ul]3 + ts(k)

n() = % |- — ll”Q, 92(+) = ts(:),

B

- X. B? =1

Algorithm ADMM for solving (9)

1
2
3
4.
5.
6
7
8

0.

10.
11.

Initialize & = 0, 72 > 0, v,
repeat

2D = (D) ' (1
ziz) —l—d

r, = XTZAU —I—ZA (2) B
k]\_|_1 = |:XTX +1 rg;
Vi(fnzl - PI’OX”,I/TQ Xk“*l - d‘(!“l))

1 1 5 1
d), =d) - Xk —vi)))
2
V.g-lzl - Prox!)z/‘fz (k"\‘+1 - dIE )
2 2 2
dﬁ:ﬁl = d;_ - (Krs1 — V.EHL)
k+—k+1

12. until some stopping criterion is satisfied.

(1) 5@ 41 4@
Vo s dy L dg

9)
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On synthetic blurry images

Test the baby image (size: 512x512) blurred by eight PSFs provided by
'Levin et al., 2009]. In the algorithm, the operator U here has two options:

(a) (b) PSNR (dB): 18.008 (c) PSNR(dB): 20.861

Figure 1. Estimated HR images, PSFs and PSNRs. (a) are input LR blurry image (size: 256 x 256, obtained by (1)) and one of the eight PSFs (corresponding
to B in (1)); (b) and (c) are estimated HR images, PSFs (corresponding to K in (5)) and PSNRs by the proposed method with the bicubic and bilinear
interpolation operators, respectively.
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On synthetic blurry images

Estimated ) ’
bicubic PSFs

PSNR (dB) | 20.809 17.228 16.856 21.171 16.512 17.040 16.364

Estimated
bilinear PSFs

PSNR (dB) | 19.933 19.213 16.569 22.184 16.776 17.454 16.286

Figure 2. Other seven PSFs and their corresponding estimated PSFs and PSNRs by the proposed method with the bicubic and bilinear operators, respectively.



On real images

LR blurry

SRCNN, 230 sec. SRCNN+BID, 306 sec. Proposed. 78 sec.

Figure 3. Results on a real LR blurry image (size: 900 x 540).
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On real images

" "

LR ScSR, 2052 sec. SRCNN, 187 sec. Proposed, 57 sec.

Figure 4. Results on a real LR image (size: 324 X 464).
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Conclusions

 Have proposed a new approach for single blind image super-
resolution (SBISR) via a blind image deblurring (BID) method,
bridging the gap between SBISR and BID, benefitting from that
some BID methods are arguably faster and easier to understand,
than state-of-the-art SISR/SBISR methods, and reaching
competitive speed and restoration quality.

 Experiments on synthetic and real images show that the
effectiveness and competitiveness of the proposed method.

Thanks for your attention!
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