Super-resolving a Single Blurry Image Through Blind Deblurring Using ADMM

Xiangrong Zeng, Yan Liu, Jun Fan, Qizi Huangpeng, Jing Feng, Jinlun Zhou, Maojun Zhang

> College of Information System and Management National University of Defense Technology

Single image super-resolution (SISR)

aims to recover a high-resolution (HR) image $\mathbf{X} \in \mathbb{R}^{Nh}$ from a low-resolution (LR) input image $\mathbf{Y} \in \mathbb{R}^{Nl}$

$\mathbf{y} = \mathbf{D}\mathbf{B}\mathbf{x} + \mathbf{n}$

D: $\mathbb{R}^{N_h} \to \mathbb{R}^{N_l} (N_l < N_h)$ is the downsampling matrix **B**: $\mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ is the blurring matrix **n** $\in \mathbb{R}^{N_l}$ is the additive noise

The SISR problem is typically severely ill-posed!

Single image super-resolution (SISR)

$\mathbf{y} = \mathbf{D}\mathbf{B}\mathbf{x} + \mathbf{n}$

If **B** is the identity, then SISR reduces to the Image interpolation.

Most SISR cases assume **B** is known or predefined:

- Gaussian blur [Begin and Ferrie, 2004]
- Bicubic interpolation (BI) [Glasner, et al., 2009; Yang, et al., 2010]
- Gaussian blur followed by BI [Freeman and Liu, 2011]
- Simple pixel averaging [Fattal, 2007]

3

Two important works

- An accurate blur model is critical to the success of SISR algorithms[Efrat et al., 2013]
- The PSF of camera is the wrong blur kernel from the LR image [Michaeli and Irani, 2013]

Both seek accurate blur kernels based on existing SISR algorithms, thus their complexisties are even more than those of the SISR ones.

Single blind image super-resolution (SBISR)

$\mathbf{y} = \mathbf{D}\mathbf{B}\mathbf{x} + \mathbf{n}$

If **B** is unknown, then SISR becomes the single blind image super-resolution (**SBISR**).

Only a few works dedicated to the SBISR problem, have restrictive assumptions on the blur kernel:

- A parametric Gaussian model with unknown width [Begin and Ferrie, 2004; Qiao, et al., 2006; Wang, et al., 2005]
- Multiple parametric models [He, et al., 2009]
- A nonparametric model assuming the kernel has a single peak [He, et al., 2009]

In this paper

We address the SBISR problem via a blind image deblurring (BID) method, bridge the gap between SBISR and BID, benefit from that some BID methods are arguably faster and easier to understand, than state-of-the-art SISR/SBISR methods, and reach competitive speed and restoration quality.

SBISR and BID

SBISR:

recover a HR image $\mathbf{x} \in \mathbb{R}^{N_h}$ from a LR image $\mathbf{y} \in \mathbb{R}^{N_l}$ $\mathbf{y} = \mathbf{DBx} + \mathbf{n}$

D: $\mathbb{R}^{N_h} \to \mathbb{R}^{N_l} (N_l < N_h)$ is the downsampling matrix **B**: $\mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ is the blurring matrix **n** $\in \mathbb{R}^{N_l}$ is the additive noise

BID:

recover a sharp image $\mathbf{X} \in \mathbb{R}^{N_h}$ from a blurry image $\mathbf{Z} \in \mathbb{R}^{N_h}$

$\mathbf{z} = \mathbf{B}\mathbf{x} + \mathbf{s}$

B: $\mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ is the blurring matrix **s** $\in \mathbb{R}^{N_h}$ is the additive noise

SBISR and BID

With the same **B** and **x** BID: $z = Bx + s \mapsto Bx = z - s$ $\downarrow \downarrow$ SBISR: y = DBx + n $\downarrow \downarrow$ y = D(z - s) + n= Dz + (n - Ds)

Due to the introduce of **D**, the length of **y** is less than that of **z**, namely, **y** has fewer known samples than **z**.

we can solve the SBISR problem in an easier way via reformulating it into a BID problem.

Reformulating SBISR into BID

SBISR: y = DBx + n

The idea is to first interpolate the LR image $\mathbf{y} \in \mathbb{R}^{N_l}$ as $\mathbf{u} \in \mathbb{R}^{N_h}$

 $\mathbf{u} = \mathbf{U}\mathbf{y} = \mathbf{U}\mathbf{D}\mathbf{B}\mathbf{x} + \mathbf{U}\mathbf{n}$

U: \mathbb{R}^{N_l} → \mathbb{R}^{N_h} is the interpolation operator (e.g. *bicubic* or *bilinear*)

The resulting BID : $\mathbf{u} = \mathbf{K}\mathbf{x} + \mathbf{e}$

 $\mathbf{K} = \mathbf{UDB}: \mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ is the new blurring matrix $\mathbf{e} \in \mathbb{R}^{N_h}$ is the interpolation of \mathbf{n}

Instead of super-resolving **x** from **y**, the HR image can be obtained via blind deblurring **x** from **u**. 9

The resulting BID problem

The regularization problem

$$(\hat{\mathbf{x}}, \hat{\mathbf{k}}) = \arg\min_{\mathbf{x}, \mathbf{k}} \frac{\lambda}{2} \|\mathbf{K}\mathbf{x} - \mathbf{u}\|_{2}^{2} + \boldsymbol{\phi}_{\mathrm{GTV}}(\mathbf{x}) + \boldsymbol{\iota}_{\mathcal{S}}(\mathbf{k})$$

$$\boldsymbol{\phi}_{\mathbf{GTV}}(\mathbf{x}) = \sum_{i} |[\mathbf{D}_{h}\mathbf{x}]_{i}|^{p} + |[\mathbf{D}_{v}\mathbf{x}]_{i}|^{p}, 0 \le p \le 1$$

 D_h and D_h denote the horizontal and vertical derivative operator, respectively.

 $\mathbf{L}_{\mathcal{S}}$ is the indicator of the set \mathcal{S} which is defined as

 $\mathcal{S} = \{\mathbf{k} : \mathbf{k} \geq \mathbf{0}, \|\mathbf{k}\|_1 = \mathbf{1}\}$

The algorithmic framework

Algorithm Proposed algorithmic framework

- 1. **Input**: Observed LR image \mathbf{y} , λ and $\alpha > 1$.
- 2. Step I: Interpolate y via u = Uy.
- 3. **Step II**: Blind estimation of blur filter **k** from **u**, by alternative loop over coarse-to-fine levels:
- 4. \blacktriangleright Update the image estimate

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{\lambda}{2} \|\hat{\mathbf{K}}\mathbf{x} - \mathbf{u}\|_{2}^{2} + \phi_{\text{GTV}}(\mathbf{x})$$
 (8)

where $\hat{\mathbf{K}}$ is the convolution matrix constructed by $\hat{\mathbf{k}}$ obtained from the blur filter estimation below.

5. ► Update the blur filter estimate

$$\hat{\mathbf{k}} \leftarrow \arg\min_{\mathbf{k}} \frac{\lambda}{2} \|\hat{\mathbf{X}}\mathbf{k} - \mathbf{u}\|_{2}^{2} + \iota_{\mathcal{S}}(\mathbf{k})$$
 (9)

Can be efficiently solved by alternating direction method of multipliers (ADMM)

where $\hat{\mathbf{X}}$ is the convolution matrix constructed by $\hat{\mathbf{x}}$ obtained from the image estimation above.

6. Fince the parameter λ

$$\lambda \leftarrow \alpha \lambda. \tag{10}$$

- 7. **Step III**: Non-blind estimation of HR image x^* from u through solving (8) with final \hat{k} (obtained by Step II).
- 8. **Output**: the HR image \mathbf{x}^* and the blur estimate $\hat{\mathbf{k}}$.

The alternating direction method of multipliers (ADMM)

[Gabay and Mercier, 1976; Boyd et al., 2011; Almeida and Figueiredo, 2013]

ADMM has been as a popular tool to solving imaging inverse problems

$$\min_{\mathbf{x}} \sum_{j}^{J} g_j(\mathbf{B}^{(j)} \mathbf{x})$$
(11)

Algorithm ADMM for solving (11) Set $k = 0, \beta > 0, \mathbf{v}_0^{(1)}, \cdots, \mathbf{v}_0^{(J)}, \mathbf{d}_0^{(1)}, \cdots, \mathbf{d}_0^{(J)}$. 1. 2. repeat $\mathbf{r}_{k} = \sum_{i=1}^{J} (\mathbf{B}^{(i)})^{T} (\mathbf{v}_{k}^{(i)} + \mathbf{d}_{k}^{(i)})$ 3. $\mathbf{x}_{k+1} = \left[\sum_{j=1}^{J} (\mathbf{B}^{(j)})^T \mathbf{B}^{(j)}\right]^{-1} \mathbf{r}_k$ 4. 5. for $j = 1, \cdots, J$ $\mathbf{v}_{k+1}^{(j)} = \operatorname{Prox}_{g_j/\tau} \left(\mathbf{B}^{(j)} \mathbf{x}_{k+1} - \mathbf{d}_k^{(j)} \right)$ 6. $\mathbf{d}_{k+1}^{(j)} = \mathbf{d}_{k}^{(j)} - (\mathbf{B}^{(j)}\mathbf{x}_{k+1} - \mathbf{v}_{k+1}^{(j)})$ 7. 8. end for 9. $k \leftarrow k+1$ 10. **until** some stopping criterion is satisfied.

In line 6 of above algorithm, the proximity operator of g_j/τ : $\operatorname{Prox}_{g_j/\tau}$ is defined as

$$\operatorname{Prox}_{g_{j}/\tau}\left(\mathbf{v}\right) = \arg\min_{\mathbf{x}}\left(g_{j}\left(\mathbf{x}\right) + \frac{\tau}{2}\left\|\mathbf{x} - \mathbf{v}\right\|^{2}\right).$$
(12)

x update using the ADMM

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{\lambda}{2} \| \hat{\mathbf{K}} \mathbf{x} - \mathbf{u} \|_{2}^{2} + \phi_{\text{GTV}}(\mathbf{x})$$

$$g_{1}(\cdot) = \frac{\lambda}{2} \| \cdot - \mathbf{u} \|_{2}^{2}, \ g_{2}(\cdot) = g_{3}(\cdot) = \| \cdot \|_{p}^{p},$$

$$\mathbf{B}^{(1)} = \hat{\mathbf{K}}, \ \mathbf{B}^{(2)} = \mathbf{D}_{h}, \ \mathbf{B}^{(3)} = \mathbf{D}_{v}$$
(8)

Algorithm ADMM for solving (8)

1. Initialize
$$k = 0, \tau_1 > 0, \mathbf{v}_0^{(1)}, \mathbf{v}_0^{(2)}, \mathbf{v}_0^{(3)}, \mathbf{d}_0^{(1)}, \mathbf{d}_0^{(2)}, \mathbf{d}_0^{(3)}.$$

2. repeat
3. $\mathbf{z}_k^{(1)} = \mathbf{v}_k^{(1)} + \mathbf{d}_k^{(1)}$
4. $\mathbf{z}_k^{(2)} = \mathbf{v}_k^{(2)} + \mathbf{d}_k^{(2)}$
5. $\mathbf{z}_k^{(3)} = \mathbf{v}_k^{(3)} + \mathbf{d}_k^{(3)}$
6. $\mathbf{r}_k = \hat{\mathbf{K}}^T \mathbf{z}_k^{(1)} + \mathbf{D}_h^T \mathbf{z}_k^{(2)} + \mathbf{D}_h^T \mathbf{z}_k^{(3)}$
7. $\mathbf{x}_{k+1} = \left[\hat{\mathbf{K}}^T \hat{\mathbf{K}} + \mathbf{D}_h^T \mathbf{D}_h + \mathbf{D}_v^T \mathbf{D}_v\right]^{-1} \mathbf{r}_k$
8. $\mathbf{v}_{k+1}^{(1)} = \operatorname{Prox}_{g_1/\tau_1} \left(\hat{\mathbf{K}} \mathbf{x}_{k+1} - \mathbf{d}_k^{(1)}\right)$
9. $\mathbf{d}_{k+1}^{(1)} = \mathbf{d}_k^{(1)} - (\hat{\mathbf{K}} \mathbf{x}_{k+1} - \mathbf{v}_{k+1}^{(1)})$
10. $\mathbf{v}_{k+1}^{(2)} = \operatorname{Prox}_{g_2/\tau_1} \left(\mathbf{D}_h \mathbf{x}_{k+1} - \mathbf{d}_k^{(2)}\right)$
11. $\mathbf{d}_{k+1}^{(2)} = \mathbf{d}_k^{(2)} - (\mathbf{D}_h \mathbf{x}_{k+1} - \mathbf{v}_{k+1}^{(2)})$
12. $\mathbf{v}_{k+1}^{(3)} = \operatorname{Prox}_{g_3/\tau_1} \left(\mathbf{D}_v \mathbf{x}_{k+1} - \mathbf{d}_k^{(3)}\right)$
13. $\mathbf{d}_{k+1}^{(3)} = \mathbf{d}_k^{(3)} - (\mathbf{D}_v \mathbf{x}_{k+1} - \mathbf{v}_{k+1}^{(3)})$
14. $k \leftarrow k + 1$

15. **until** some stopping criterion is satisfied.

k update using the ADMM

$$\hat{\mathbf{k}} \leftarrow \arg\min_{\mathbf{k}} \frac{\lambda}{2} \| \hat{\mathbf{X}} \mathbf{k} - \mathbf{u} \|_{2}^{2} + \iota_{\mathcal{S}}(\mathbf{k})$$

$$g_{1}(\cdot) = \frac{\lambda}{2} \| \cdot - \mathbf{u} \|_{2}^{2}, \ g_{2}(\cdot) = \iota_{\mathcal{S}}(\cdot),$$

$$\mathbf{B}^{(1)} = \hat{\mathbf{X}}, \ \mathbf{B}^{(2)} = \mathbf{I},$$

$$(9)$$

- Algorithm ADMM for solving (9) 1. Initialize $k = 0, \tau_2 > 0, \mathbf{v}_0^{(1)}, \mathbf{v}_0^{(2)}, \mathbf{d}_0^{(1)}, \mathbf{d}_0^{(2)}$.
- 2. repeat
- 2. repeat 3. $\mathbf{z}_{k}^{(1)} = \mathbf{v}_{k}^{(1)} + \mathbf{d}_{k}^{(1)}$ 4. $\mathbf{z}_{k}^{(2)} = \mathbf{v}_{k}^{(2)} + \mathbf{d}_{k}^{(2)}$ 5. $\mathbf{r}_{k} = \hat{\mathbf{X}}^{T} \mathbf{z}_{k}^{(1)} + \mathbf{z}_{k}^{(2)}$ 6. $\mathbf{k}_{k+1} = \left[\hat{\mathbf{X}}^T \hat{\mathbf{X}} + \mathbf{I}\right]^{-1} \mathbf{r}_k$ 7. $\mathbf{v}_{k+1}^{(1)} = \operatorname{Prox}_{g_1/\tau_2} \left(\hat{\mathbf{X}} \mathbf{k}_{k+1} - \mathbf{d}_k^{(1)} \right)$ 8. $\mathbf{d}_{k+1}^{(1)} = \mathbf{d}_k^{(1)} - (\hat{\mathbf{X}}\mathbf{k}_{k+1} - \mathbf{v}_{k+1}^{(1)})$ 9. $\mathbf{v}_{k+1}^{(2)} = \operatorname{Prox}_{g_2/\tau_2} \left(\mathbf{k}_{k+1} - \mathbf{d}_k^{(2)} \right)$ 10. $\mathbf{d}_{k+1}^{(2)} = \mathbf{d}_{k}^{(2)} - (\mathbf{k}_{k+1} - \mathbf{v}_{k+1}^{(2)})$ 11. $k \leftarrow k+1$
- 12. **until** some stopping criterion is satisfied.

On synthetic blurry images

Test the baby image (size: 512×512) blurred by eight PSFs provided by [Levin et al., 2009]. In the algorithm, the operator **U** here has two options:

Figure 1. Estimated HR images, PSFs and PSNRs. (a) are input LR blurry image (size: 256×256 , obtained by (1)) and one of the eight PSFs (corresponding to **B** in (1)); (b) and (c) are estimated HR images, PSFs (corresponding to **K** in (5)) and PSNRs by the proposed method with the *bicubic* and *bilinear* interpolation operators, respectively.

On synthetic blurry images

Other seven PSFs		1	$\hat{\sigma}$	V P	\boldsymbol{k}^{j}	2	0'	\mathcal{V}
bicubic	Estimated	4	2	A	140	1. C.		15
	PSFs		100	¥ .		4		
	PSNR (dB)	20.809	17.228	16.856	21.171	16.512	17.040	16.364
bilinear	Estimated	. 10	: A -	1	6.1			1.1
	PSFs	1		¥		6	1711	
	PSNR (dB)	19.933	19.213	16.569	22.184	16.776	17.454	16.286

Figure 2. Other seven PSFs and their corresponding estimated PSFs and PSNRs by the proposed method with the bicubic and bilinear operators, respectively.

On real images

LR blurry

ScSR, 5424 sec.

ScSR+BID, 5501 sec.

SRCNN, 230 sec. SRCNN+BID, 306 sec. Proposed, 78 sec.

Figure 3. Results on a real LR blurry image (size: 900×540).

On real images

 $\mathbf{K} = \mathbf{SUSK}, \mathbf{ZUSZ} \mathbf{SUC}, \mathbf{SUCUU}, \mathbf{UU}, \mathbf{UU},$

Figure 4. Results on a real LR image (size: 324×464).

Conclusions

- Have proposed a new approach for single blind image superresolution (SBISR) via a blind image deblurring (BID) method, bridging the gap between SBISR and BID, benefitting from that some BID methods are arguably faster and easier to understand, than state-of-the-art SISR/SBISR methods, and reaching competitive speed and restoration quality.
- Experiments on synthetic and real images show that the effectiveness and competitiveness of the proposed method.

Thanks for your attention!