Does Web Computing Play a Major Role in Addressing Some of Big Geospatial Data Challenges?

Hassan A. Karimi

Geoinformatics Laboratory School of Information Sciences University of Pittsburgh

Geospatial Data

- What is geospatial data?
- What are geospatial data models?
- What are some common geospatial data sources?
- What are some geospatial applications?

Geospatial Data?

- Location, location, location
- Two models
 - Vector
 - Raster
- Vector model or object model
 - Points, lines, areas (polygons)
- Raster model or field model
 - Pixels

Rome (Google Maps: raster data)

Rome (Google Maps: vector+raster)

Geospatial Data Are Special?

• Geometry

- Location of an object or field
- Object may be a point, line, or an area in vector model
 - E.g., latitude/longitude of a point (house)
- Locations of **pixels** in raster model

• Coordinate system, projection

- Topology
 - Relationship between objects in a geographic area
 - E.g., a road is adjacent to a house
 - Topology can be **explicit** in vector DBs
 - Topology is **implicit** in raster DBs

Scale

• Small, medium, large

Multiple-Representation of Objects

- A geospatial database can store an object differently at different scales
 - Small scale \rightarrow building \rightarrow a point
 - Large scale \rightarrow building \rightarrow an area (polygon)

Spatial Data Manipulation

- GIS supports functions such as:
 - Merging
 - Map overlay
 - Buffering
 - Proximity analysis
 - Point-in-polygon

Central meridian (selected by mapmaker)

Change in spacing of parallels is less than that on Mercator projection

Equator always touches cylinder

Source: http://en.wikipedia.org/wiki/Map_projection#/media/File:Usgs_map_miller_cylindrical.PNG

Example Computations on Vector Data

- Overlay
 - Polygon intersection
- Buffering
- Proximity analysis
- Network analysis
 - Routing

Example Computations on Raster Data

- Image classification
- Feature extraction
- Object recognition
- Temporal analysis

12

Source: http://www.esri.com/news/arcuser/0610/graphics/mosaicdataset_5-lg.jpg

Nepal: After Earthquake

Source: https://commons.wikimedia.org/wiki/File:Hires_150508-M-WN441-131A_An_aerial_image_of_damages_after_earthquake_in_Nepal.jpg

Applications

- Environmental engineering
- Natural resources
- Transportation
- Public health
- Economic development
- Sustainable development
- Climatology
- Agriculture
- Forestry
 - Insurance

Geospatial Data Sources

- Digitization of existing paper maps \rightarrow vector or raster
- Global Navigation Satellite System (GNSS) \rightarrow vector
- Imagery (satellite, LIDAR) \rightarrow raster
- Existing databases (clearinghouses) \rightarrow vector and raster
- Field surveying \rightarrow vector
- Crowdsourcing through volunteers \rightarrow vector and raster

Geospatial Databases

- Vector data
 - Dimension
 - 2D, 2.5D, 3D, 4D
 - Topologically structured
 - Less topology \rightarrow less storage \rightarrow more computation
 - More topology \rightarrow more storage \rightarrow less computation
- Raster data
 - Resolution
 - Spectral, spatial, temporal
 - Low spatial resolution \rightarrow less details \rightarrow less storage
 - High spatial resolution \rightarrow more details \rightarrow more storage

2D Vector Data

Source: http://webhelp.esri.com/arcgisserver/9.3/java/geodatabases/feat_c-1166806282.gif

3D Vector Data

Source: https://commons.wikimedia.org/wiki/File:Mount_Whitney_3D_map_version1.jpg 19

High Resolution Satellite Image

Source: http://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2015-06-03

Big Geospatial Data

- Vector data
 - Very large databases
 - Different dimensions
 - Different scales
 - Topologically structured
- Raster data
 - Resolution
 - Some satellites revisit every day (terabytes data per day)

Source: https://www.crcpress.com/product/isbn/9781466586512

Source: http://atrain.nasa.gov

Framework Themes

Source: http://www.fgdc.gov/images/largegraphics/fgdcgraphic.jpg

Web Mapping

Source: http://resources.arcgis.com/en/communities/mapping/home/GUID-22E6CB53-87B4-4567-8439-1E257515E66E-web.jpg

"E. W. Gilbert's version (1958) of John Snow's 1855 map of the Soho cholera outbreak showing the clusters of cholera cases in the London epidemic of 1854"

Source: http://en.wikipedia.org/wiki/Geographic_information_system#Applications

Topographic Map (Google Maps)

Source: http://presentations.opengeo.org/2012_FOSSGIS/suiteintro/_images/wms.png

Geospatial Data Analytics

- Pitfall
 - Standard statistics do not apply
- Techniques
 - Geometry (e.g., distance)
 - Topology (e.g., adjacency)

Geospatial Data Analytics

- Autocorrelation
 - Point and area
- Point patterns
 - Quadrants
- Cluster detection
 - Scan statistics
- Geometry
 - Proximity polygons
- Spatial interpolation
 - Inverse Distance Weighting (IDW)
 - Kriging
- Trend surface analysis
 - Digital Elevation Model (DEM)
 - Triangulated Irregular Network (TIN)

Cyberinfrastructure for Big Geospatial Data Problem Solving

- Web
 - Recognize different relevant resources (data, people)
 - Connect different resources (HW, SW)
 - Allow platform-independent access and computation
 - Facilitate distributed computing

Web Computing

- Crowdsourcing geospatial data
 - Collaborative mapping
- Smartphones
 - Geo-tagging
 - Gateway to cyberinfrastructure
- Personalization of maps
- Web services for handling complex tasks
- Collaborative problem solving
- High-performance computing on Web browsers
 - E.g., 3D rendering and animation (4D)

Thank You

33