Panel on SPACOMM 2015
Monday, April 20, 2015

Topic: Small Satellite Missions: Capabilities and Challenges in Space Communications

Panelists:

- Timothy Pham, Jet Propulsion Laboratory, USA
- Herbert Sims, NASA Marshall Space Flight Center, USA
- Jose Santiago Perez Cano, Euroconsult, France

Moderator:

Joseph C. Casas, Missions Formulation Manager, Science and Space Technology Projects Office, NASA MSFC, Huntsville, Alabama, USA
Small satellites are growing... in popularity and utility

- That’s the message from a new study looking into trends and projections for the nano/microsatellite or the so called U Class satellite market.

- The new assessment comes from SpaceWorks of Atlanta, Georgia and the study projects that more than 400 nano/micro satellites will need launches annually in the year 2020 and beyond.

- SpaceWorks is currently tracking 650 future (2014 – 2016) U Class satellites with masses between 1 kilogram and 50 kilograms in various stages of planning or development.
CHALLENGES AND OPPORTUNITIES WITH SMALL SATELLITES
This presentation is based on proprietary information deriving from Euroconsult

> internal research elements

> SmallSat research report
OUTLINE

> New Space and Small Satellites, the perfect story
> What is New Space?
> Are Small Satellites a real business?
> 10 years of Small Satellites
> What is next?
> Technological challenges in Small Satellites
New Space and small satellites, the perfect story

In the next 5 years Europe will increase its share up to ~26% and USA will be slightly lower (43%)

46% of those US satellites are used for commercial purposes
What is New Space?

<table>
<thead>
<tr>
<th>Company</th>
<th>Creation Year</th>
<th>Emblematic Investor</th>
<th>Funds Risen</th>
<th>Actions / Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpaceX</td>
<td>2002</td>
<td>Elon Musk</td>
<td>~$470 M</td>
<td>New actor in the space transportation phase
Service contract with NASA
Diversification of client portfolio
Future smallsats manufacturing</td>
</tr>
<tr>
<td>EO</td>
<td>2009</td>
<td>Google</td>
<td>~$110 M, acquired for $500 M by Google (2014)</td>
<td>SW Development for EO
Two launched satellites
First commercial data distribution contracts obtained before Google’s arrival</td>
</tr>
<tr>
<td>Skybox</td>
<td>2010</td>
<td></td>
<td>~$65 M</td>
<td>Founded by former NASA employees
Operartor of 100 cubesats constellation
First partnership for data distribution</td>
</tr>
<tr>
<td>Antenna e satcom</td>
<td>2012 (spin-off from IV)</td>
<td>Bill Gates</td>
<td>~$82 M</td>
<td>Reception antennae made with nano-materials.
Partnership with satellite operators
Prototypes phases/ Test on going phase
Industrial partnership with Sharp for the industrial scale production</td>
</tr>
</tbody>
</table>
What is New Space?

CALIFORNIA, THE ECOSYSTEM OF NEW SPACE FOR ESTABLISHED COMPANIES AND NEWCOMERS

Ames Research Center support, including:

Venture Capital actsives in New Space:
- Draper Fisher Jurveston
- Kohsla Ventures
- Canaan Partners
- Norwest Venture
- Capricorn
- Bessemer
- Founders Fund
- RRE Ventures

Barcelona – 20 April 2015 Page 8
What is New Space?

A concept materializing in wave of investment

Private investors not yet involved in space activities commit money to develop systems/services thanks to:

- The US government leaves room to investors (i.e. stop funding new system development and instead purchase a service from a private operator) and boost the ecosystem
- Technological maturity allows to increase productivity or new uses

End of NASA’s budget golden age, end of R&D telecom (ACTS)

Creation of private operators (e.g. PanAmSat), TDRSS commercial

Private projects for telecom constellations (e.g. Ellipso), a domaine non participated by the government, And so, for new private launch systems (e.g. Beal)

3 constellations funded (Iridium, Globalstar, Orbcomm); launcher projects were abandoned

Externalization to private sector, which is recognized by the government to be mature enough to fulfill their operational needs:

- 1st contract of imagery purchasing by NGA to DigitalGlobe, following a presidential directive
- 2 contracts NASA to SpaceX & Orbital Sciences for cargo delivery to ISS via COTS
What is New Space?

NEW SPACE’S INGREDIENTS MADE IN USA

Encouragement of government to private investment: Commercial Acts, National Space Policy, and Space Act Agreements (SSA) as NASA’s partnership instrument

Homogeneous governance of space activity, Size and structure of the national, governmental and public market

~1 billion $ risen by Silicon Valley actors (from $20M to 500M)

Abundance of VC & PE

New space companies & projects

Technological advantage

Private & strategic investors

Strategic investors in firsts project phases (Google, Liberty Media etc.)

Recurrent/cultural interest of rich private investors

Barcelona – 20 April 2015 Page 10
Are Small Satellites a real business?

VALUE CHAIN IN SATELLITES WITH COMMERCIAL FINAL UTILIZATION (2013)

*Market value in 2013 billion € at launch
Are small satellites a real business?

PAST DECADE OF THE SMALLSAT MARKET IN TWO LAUNCH PERIODS
Are Small Satellites a real business?

AND... WHAT IS NEXT?

AN INCREASE OF ~17% IS EXPECTED IN THE PERIOD 2015-2019

7.4 BILLION EXPECTED

YES WE CAN!
32 % FROM NANO SATELLITES COMES FROM UNIVERSITIES /ACADEMIC WORLD (2005-2019)
10 years of Small Satellites

LET’S ANALYZE 2014...

ALL SATELLITE MARKETS IN LOW EARTH ORBIT (LEO) IN 2014

MASS

68 tons

8.2 tons

0.7 t

UNIT

1 to 6,700 kg

10 to 500 kg

1 to 10 kg

* Including 93 cubesats for Planet Labs

Barcelona – 20 April 2015 Page 15
What is next?

MEGA CONSTELLATIONS?

- There is a flurry of US commercial projects in the comsat, EOsat and metsat domains. Many believe that all are not fundable and that many changes are possible at different stages of the projects
 - No-go or merger possible at paper concept, qualif satellites, 1rst batch launch, 1G replenishment
- Constellations projects are mainly in competition for the same market (permanent metric imagery, met data with GSP-RO, AIS, IoT, M2M), however, with vastly different architectures and capex volumes
- Most of them have not yet selected a satellite manufacturer: except Skysat (SSL/MDA)
- Constellations are deployed in batches

<table>
<thead>
<tr>
<th>Smallsat constellations projects</th>
<th>EO and meteo missions</th>
<th>Telecom missions</th>
<th>Other missions</th>
</tr>
</thead>
</table>
| Cubesat/nanosat (< 20 kg launch mass) | • Planet Lab
 • Perseus
 • Spire | • Outernet | • QB50
 • ESDN
 • S-Net |
| Microsat/minisat (< 500 kg) | • Skysat
 • BlackSky
 • OmniEarth
 • PlanetIQ
 • AxelGlobe | • OneWeb
 • SpaceX / Google
 • LeoSat
 • + 6 other ITU filings (see next page) | • cygnss |
What is next?

<table>
<thead>
<tr>
<th>Partners</th>
<th>OneWeb (L5)</th>
<th>No name</th>
<th>LeoSat</th>
<th>Steam 1&2</th>
<th>Comstellations</th>
<th>MCSat</th>
<th>CANPOL -2</th>
<th>3ECOM -1</th>
<th>ASK-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualcomm,</td>
<td>SpaceX,</td>
<td>TAS</td>
<td></td>
<td></td>
<td></td>
<td>Thales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virgin Galact, Google, Fidelity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>648 sats 200 kg 1,200 km</td>
<td>4,025 sats 300-400 kg 1,100 km</td>
<td>80 then 120-140 sats 1,800 km</td>
<td>4,257 sats in 43 planes</td>
<td>794 sats 12 planes</td>
<td>800 to 4,000 sats</td>
<td>72 sats 8 planes</td>
<td>264 sats 12 planes</td>
<td>10 sats</td>
</tr>
</tbody>
</table>

- At least 9 projects to provide communications anywhere on Earth with smallsat constellations have been filed at the ITU
- One project more visible than the others because it is supported by one GAFA company (Google). The GAFA companies study all comm infrastructure solutions to expand the reach for their services
- The two most advanced projects are OneWeb and LeoSat: both are backed by entrepreneurs that are not new to space technology (O3b and Kymeta)
- A new paradygm for the satellite suppliers which may become risk partners in the projects and also satellite operators (make/buy decision of operation service)
Technological challenges

- **STRUCTURE & MECHANISMS**
 - Satellite platform standardizations
 - Development of MEMS
 - New structure materials

- **THERMAL**
 - Miniaturization of active thermal control system

- **OBDH**
 - High performance FPGAs
 - Wireless bus
 - High capacity SRAM memories

- **AOCs**
 - Miniaturization AOCS actuators
 - Integration of attitude control system

- **PROPULSION**
 - Electrical propulsion
 - Miniaturization of liquid & solid propulsion systems

- **COMMUNICATIONS**
 - High gain deployable antennae
 - Software Defined Radio
 - Optical communications

- **POWER**
 - 4junction solar cells
 - Flat lithium ion polymer batteries
Technological challenges

LAUNCHERS

HEAVY LIFT

ADAPTERS (ESPA for ATLAS 5, DELTA4 & FALCON 9)

MEDIUM LIFT

SPACE TUGS

ISS (NASA’S NLAS, 12 QUADPACK…)

DEDICATED LAUNCHERS

AIR LAUNCHED (Launcher One, SOAR…)

SMALL LAUNCHER (Rocket Lab’s Electron, Firefly Alpha …)

ADAPTERS (i.e. for multiple nanosats)

DIRECT LAUNCH (one smallsat)
THANKS FOR YOUR ATTENTION

Santiago Pérez, Consultant

Paris (Headquarters)
86 Boulevard de Sébastopol
75003 Paris
+33 1 49 23 75 30

www.euroconsult-ec.com
FASTSat-HSV

Dr. William Herbert Sims
National Aeronautics and Space Administration
NASA / MSFC / ES63
Huntsville, AL USA
Herb.sims@nasa.gov

www.nasa.gov
The FASTSAT-HSV Spacecraft

Requirements and Design

- 12-month LEO mission
- Class D ESPA class spacecraft
- 6 instrument capacity
- NanoSat (CubeSat) Payload Deployer (P-POD)
- Spacecraft mass: ~150 kg
- Size 24” x 28” x 38” (ESPA)
- Payload mass: 21 kg
- Payload power: 30 W average
- S-Band downlink 1 Mbps
- S-Band uplink 50 Kbps
- Stabilization: single axis (magnetic torque rods)
- Pointing accuracy: 20°/3-axis; 10°/single axis
- Pointing knowledge: 0.1°

FASTSAT was designed, developed, integrated, tested and certified for flight in 15 months using an innovative business model, tailored processes, co-located and experienced team.
FASTSAT-HSV01
Six Instruments on One Platform

NASA and USNA Miniature Imager for Neutral Ionospheric Atoms and Magnetospheric Electrons (MINI-ME)
- Improve space weather forecasting for operational use

AFRL Light Detection System (LDS)
- Evaluate atmospheric propagating characteristics on coherent light generated from known ground stations

NASA + ARMY SMDC + AFRL + VCSI Nano Sail Demonstration (NSD)
- Demonstrate deployment of a compact 10-m² solar sail ejected as a CubeSat

NASA and USNA Thermospheric Temperature Imager (TTI)
- Increase accuracy of orbital predictions for low-Earth orbiting assets

NASA & USNA Plasma Impedance Spectrum Analyzer (PISA)
- Permit better predictive models of space weather effects on communications and GPS signals

AFRL + NASA + AF Miniature Star Tracker (MST)
- Demonstrate small and low-power star tracker
FASTSAT Mission *By The Numbers*

- **Spacecraft Status (as of July 25, 2012)**
 - Launch Nov 19 at 7:25 PM CST
 - 613 days mission elapsed time
 - 9050 orbits at ~650 km
 - Spacecraft subsystem hardware checkout accomplished by day 7
 - COMM, ADCS, C&DH, Power and attitude control modes functional

- **Spacecraft Operations**
 - Command & telemetry nominal for all NEN ground stations
 - Down linked 223-M packets for over 17 GB
 - Uplinked 450,000+ commands
 - 9 spacecraft software updates, 5 instrument software updates

- **Payload Operations**
 - Payload hardware checkout completed on mission day 10
 - Ejected NSD CubeSat day 59, deployed Sail on day 62. The first ESPA and NASA mini satellite spacecraft to eject a CubeSat
 - All six SERB experiment operations successfully implemented within first 5 months of launch. The first STP mission with SIX SERB payloads on a single spacecraft.
 - Ongoing operations continue for MINI-ME, PISA, TTI, MST, and LDS
 - Over 8.4 GB of data downlinked

FASTSAT-HSV01 has completed > 20 months of flight operations, doubling pre-mission requirements and further demonstrating capabilities of an affordable ESPA class mini satellite S&T mission.
Small Satellite Missions: Capabilities and Challenges in Space Communications

Tim Pham
Jet Propulsion Laboratory
California Institute of Technology
Outline

• Focus of discussion
• Deep space communications with the DSN
• NASA cubesat initiatives
• Opportunities and challenges
• One possible mitigation
Focus of Discussion

• Focus on scientific small satellites within NASA
 – Impact in deep space communications services provided by the NASA Deep Space Network

• DSN overview
 – Global coverage at 3 sites – California, Canberra and Madrid
 – Collection of a 70m and 3-4 34m antennas at each site
 – Support missions from HEO to edge of solar system
 – High performance optimal to deep space communications
 • Compared to typical 10m university/commercial tracking station
 – Low noise (~4x – 5x advantage)
 – High gain (~10x – 50x advantage)
Sample of Current Deep Space Missions

- **Cassini**: Saturn
- **Dawn**: Asteroids
- **Kepler**: Exoplanets
- **JUNO**: Jupiter
- **MESSENGER**: Mercury
- **STEREO**: Sun
- **Mars Odyssey**: Opportunity & Curiosity
- **Mars Express**: Mars Reconnaissance Orbiter
- **New Horizons**: Pluto
- **Chandra**: Astronomy
- **SIRTF**: Astronomy
- **Voyager**: Interstellar
- **Mars Rovers**: Opportunity & Curiosity
NASA Initiatives with Small Satellites

• Potentially doing science with less cost & support to Science Technology Engineering Technology (STEM) education

• CubeSat Launch Initiative
 (https://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html)
 – 39 cubesat launched on Education Launch of Nanosatellite missions (ELANA I-VI, X) since 2011
 – 9 or more cubesats scheduled on upcoming ELANA missions (VII, IX, XI – XIII)
NASA Initiatives with Small Satellites

- Three small satellite payloads recently selected for Exploration Mission 1 (EM-1), 2018 launch, circumlunar trajectory

<table>
<thead>
<tr>
<th>Payload</th>
<th>Strategic Knowledge Gaps Addressed</th>
<th>Mission Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSentinel</td>
<td>Human health/performance in high-radiation space environments</td>
<td>Study radiation-induced DNA damage of live organisms in cis-lunar space; correlate with measurements on ISS and Earth</td>
</tr>
<tr>
<td>ARC/JSC</td>
<td>• Fundamental effects on biological systems of ionizing radiation in space environments</td>
<td></td>
</tr>
<tr>
<td>Lunar Flashlight JPL/MSFC/MHS</td>
<td>Lunar resource potential • Quantity and distribution of water and other volatiles in lunar cold traps</td>
<td>Locate ice deposits in the Moon’s permanently shadowed craters</td>
</tr>
<tr>
<td>Near Earth Asteroid (NEA) Scout MSFC/JPL</td>
<td>NEA Characterization • NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface • NEA surface mechanical properties</td>
<td>Slow flyby/rendezvous and characterize one NEA in a way that is relevant to human exploration</td>
</tr>
</tbody>
</table>

JPL Cubesats Program
in Partnership with Universities

- M-Cubed/COVE 2 – Michigan Multipurpose Minisatellite/Cubesat Onboard processing Validation Experiment (launch: Dec. 2013)
- IPEX – Intelligent Payload Experiment (launch: Dec. 2013)
- GRIFEX – Geostationary coastal and air pollution events Readout integrated circuit In-Flight Performance Experiment (launch: Jan. 2015)
- ISARA – Integrated Solar Array and Reflectorarray Antenna (launch:TBD)
- NSPIRE – Interplanetary Nanospacecraft Pathfinder in Relevant Environment (launch: TBD)
- CHIRP – Cubesat VHF transmitter to study Ionospheric dispersion of Radio Pulses (launch: TBD)

Reference: http://www.jpl.nasa.gov/cubesat/
First Planetary Cubesat Mission
Mars Cube One (MarCO)

- Relaying data from Mars Insight Mission (2016) during Entry, Descent, Landing
- Two 6U cubesats, demonstrate communications/relay and navigation at planetary scale

Benefits and Challenges

• Benefits
 – High G/T performance of DSN antennas highly beneficial to small satellites operation
 • Enable higher data return at further distance

• Challenges
 – Schedule availability
 • Current heavy DSN schedule loading, with <10% open time
 • Support to smallsats fit within current open time? Or great impact to non-smallsat missions? Priority in time allocation?
Increase DSN Utilization with MSPA

• Multiple spacecraft per antenna (MSPA) operation increases DSN utilization
 – Simultaneous tracking of multiple spacecraft within antenna beam
 – One antenna, multiple receivers
 – DSN currently supports 2 spacecraft per antenna
 • incremental extensible to 4-MSPA and beyond in future
• More utilization efficiency can be gained with Opportunistic MSPA
 – Opportunistically capture smallsat signals as they appear in the beam when
 antenna tracks another spacecraft
 – Recorded data sent to smallsat users for telemetry extraction
 – Alternatively, telemetry extraction done by DSN with off-line processing
 • Tradeoff between development effort vs. WAN bandwidth demand
• Constraint
 – Spacecraft co-location within antenna beamwidth
 • X-band Footprint: 40km at GEO; 400km at Moon; 1500 km at L1/L2