
PANEL SOFTENG

Software Challenges for New

WWW.IARIA.ORG

1

Petre DINI
2015
BARCELONA

Software Challenges for New
Services/Devices

Petre DINI
Concordia University, Canada

China Space Agency Center, China

IARIA Organization

petre@iaria.org

New Paradigms

• Smart cities

• Smart devices

• Smart technologies

• eGovernment online services

 Urban computing, apps, embedded software

222Petre DINI

2015
BARCELONA

• Approximate computing [Big Data]

• Eventual consistency [Replicated Data]

 Storage/computation, data centers management

• Programming paradigms [agent-, context-, network-coding]

• Designing/development paradigms [agile, crowdsourcing]

• Machine learning [knowledge, semantic, taxonomies,]

• etc.

Changes in Technology/Service Lifecycle

Agile methods

Open source

Crowdsourcing

Design security/privacy-driven

333Petre DINI

2015
BARCELONA

Design security/privacy-driven

Design for accessibility

Adaptive interfaces

….

Technology/Maturity Lifecycle

NoSQL

maturity

smart phones
apps

cloud ~10 years

cloud: data-as-a-service
bandwidth-on-demand
utility-on-demand
……

fog

facebook

cyberspace
software

444Petre DINI

2015
BARCELONA

idea convincing market
enthusiasm

reality
valley

getting commercial

waterfall

crowdsourcing

fog
computing

time

Today’s Panelists

• Moderator:
Petre Dini, Concordia University, Canada | China Space Agency
Center, China

• Panelists
Laura Semini, Università di Pisa, Italy

> software product lines

555Petre DINI

2015
BARCELONA

> software product lines

• Michael Jäger, Technische Hochschule Mittelhessen, Germany

> security- and privacy-aware systems …software manipulations

• Stepan Orlov, St. Petersburg State Polytechnic University, Russian

Federation

> scaling the server, using clouds, and client-side computing

Q & A

Qs & As

666Petre DINI

2015
BARCELONA

WWW.IARIA.ORG

Qs & As

Opportunities for non-
commercial web applications

to use computational

S. Orlov, N. Shabrov

SOFTENG 2015, Barcelona, Spain

to use computational
resources

St. Petersburg Polytecnical University

Computer Technology in Engineering Dept.

http://equares.ctmech.ru

Background information

• More and more software is designed
in the form of Web applications
accessed through a regular Web
browser

• Simulation software is not an

2

• Simulation software is not an
exception

• https://simscale.com
• http://www.wolfram.com/mathematica
• http://www.wolframalpha.com/
• https://insightmaker.com/

• We've just added our own
• http://equares.ctmech.ru/

commercial, runs
simulations on server

non-commercial,
simulations on client

non-commercial,
simulations on server

Background information

• Why yet another simulation software?
• Something important is missing in other tools

• What we need
• Ability to formulate algorithm for numerical experiment in a flexible

way
• Efficiency

3

• Efficiency
• Considerably faster, than MATLAB/SciLab
• Ability to avoid extra memory usage in algorithms

• Accessibility
• Web-application running in browser

• Ease of use
• No algorithm programming. Instead, draw a scheme of data flows between

data processing units
• Ability to use an existing scheme and slightly modify it if necessary

• Extensibility
• Open source code
• Everyone can add missing features that he/she needs

Background information

• Example 1 – double pendulum
• There are quasi-periodic and

chaotic motions
• To see that, one should build the

Poincare map
• But it’s too difficult in

• MATLAB, SciLab

4

• MATLAB, SciLab
• Mathematica (before version 9)
• Maple

• In any system (except XPP)
programming is necessary, and
sometimes the solver has to be
re-implemented

• And it will work too slow

Background information

• Example 2 – Mathieu equation

• Ince – Strutt diagram shows
parametric resonance instability
areas on plane of parameters

5

areas on plane of parameters
• How student can obtain it?

• Analytically – too difficult
• Numerically – well, the fundamental

matrix has to be computed at each
pixel, and its eigenvalues – a bit too
difficult

• And it will work too slow if we use
MATLAB/SciLab

Choice of technologies

• Server
• Node.js (web-server)

• С++, Qt (computational core running on server)

• MongoDB (server database)

6

MongoDB (server database)

• Jade (HTML generation engine)

• Client
• HTML 5 (using SSE)

• D3 (interactive visualization of schemes)

• MathJax (formulas in documentation)

• CSS, JavaScript, jQuery, jQueryUI (common things)

Simulation specification

• There is a scheme consisting of boxes and links (pipes-and-filters
design pattern)

• Links determine data flows
• Boxes are data processors
• A box has ports; there are input and output ports
• A link connects an output port of a box and an input port of some

other box

7

other box
• Boxes without input ports are data sources
• Boxes without output ports are data storage
• A box can have parameters

Simulation specification

• Simulation scheme defines a
data processing system
implementing numerical experiment

• User draws simulation scheme in browser and

8

• User draws simulation scheme in browser and
sends it to server as JSON

• Simple pendulum, one phase curve

Examples

9

Examples

• Simple pendulum, phase volume evolution

10

Examples

• Simple pendulum, skeletal curve

11

Examples

• Interactive phase portrait

12

Examples

• Ince – Strutt diagram (500 x 500, 6.3 s)

13

• Double pendulum, Poincare map
• 50000 points, 28.5 s

Examples

14

Examples

• Strange attractor
• Forced Duffing oscillator

• Interactive parameter change

15

Examples

• Colored Mandelbrot set
• Interactive pan/zoom

16

Examples

• Chaos in logistic mapping

17

• Set of points where a function has a positive value
• http://habrahabr.ru/post/135344/

Examples

18

Scalability problem

• Simulations run on server

• Each client can consume a thread for as long as
user wants

• Some simulations finish fast

19

• Some simulations finish fast

• Some run for a long time

• Currently web server is one 16-cpu node

• What if our it will become popular?

Scalability problem

• Possible solutions
• Add more servers

• Who will buy them?

• Limit user resources on server
• Limit memory – ok

20

• Limit memory – ok

• Limit CPU time – won't help much
(user may really need ~1 minute, or maybe more)

• Move simulations to client
• Back to desktop applications?

• Use JavaScript or asm.js? But we're using LAPACK and will add
other 3rd party libs

• Cloud computing
• Who will pay? Or can it be available for free?

Thank you!

21

Questions?

http://equares.ctmech.ru

Software Product Lines

&

Feature Oriented Systems

Behaviour analysis
Laura Semini

Dipartimento di Informatica

Università di Pisa, Italia

• A Software Product Line is a family of software products that:
• share a common architecture
• varies in the functionalities offered

• Product line engineering accelerates product development by

• Exploiting the commonalities among the product line members while
• Managing the differences (called variabilities)

• The definition of models to specify and analyse Software Product Lines is a
current challenge

• potentially exponential number of different products that can be obtained

-oriented development

• Much of today software is developed using scenarios or use
cases

• Essentially, a use case is the specification of a feature

• Feature = Incremental unit of functionality [def by Pamela Zave]

• Moreover, features are a convenient way to model

• commonalities and variabilities of Software Product Lines

-oriented systems: interactions

• Features may interact in unexpected ways
• Initially addressed in telecommunication systems

• Features
1. are often engineered by people who are not aware of the feature-interaction

problem, and
2. are used in safety-critical domains.

• Therefore:
• (intended) feature interactions must be very well explained, and
• we should not strive for solutions (for unintended interactions) that work only half

the time.

Feature diagrams

:

design vs development perspectives

• Two essentially different perspectives on feature interaction:

1. Design:

Here the focus is on understanding requirements with a view towards building a
system in which features either do not interact, or do so in a positive way.

2. Development:

The focus here is on code, with a view towards analysing and understanding an
existing system.

Features:

annotation vs composition- based

• Composition-based

• Composition of behaviours

• Annotation-based

• Implemented with
directives to the
preprocessor

e.g. M. Jackson and P. Zave.

Distributed feature composition:

a virtual architecture for telecommunications services. IEEE TSE 1998

challenges

• Model behaviour in feature-based systems.

• Look for patterns of feature interaction.

• Designing a “feature-aware computational model”

Trusted Ubiquitious Computing

Michael Jäger
Technische Hochschule Mittelhessen

michael.jaeger@mni.thm.de

SOFTENG, April 2015

Jäger, THM Trusted Ubiquitious Computing SOFTENG’15

A User-centric View on Ubiquitious Computing

Smartphone

Smart Car Smart TV

Smart WatchSmart Home

User

Control

Information

machine-to-machine
 communication

Third Parties

Information

Control

Smart devices
- have cameras
- have microphones
- are location-aware
- provide private
 information
- are remotely
 controllable
- are exposed to
 - misuse
 - internet attacks

Behind the scenes:

Critical Infrastructures
- provide
 - communication,
 - positioning,
 - traffic control,
 - etc.
- are exposed to internet
 attacks.

Can I trust my
 personal
 systems?

 Can I trust the
 infrastructure
behind my systems?

- Who is observing me?
- Who is controlling my
 devices?
- Is it safe to use my
 systems? ...

Systems Engineering Challenge:
How can we build trustworthy systems?

Jäger, THM Trusted Ubiquitious Computing SOFTENG’15

What is Trust?

An entity can be trusted if it always behaves in the expected manner for the intended purpose
(Trusted Computing Group).

Claims

Trust is a key factor for acceptance.

Misuse and manipulation will happen increasingly.

How to build trusted systems?

Security by Design

I Take cyber-attack and information misuse attempts for granted.
I Model misuse cases, derive security requirements.
I Be concerned about privacy.

Use trusted Components

I Secure network protocols
I Open source software
I Manipulation-protected key components: "Trusted Device"

Jäger, THM Trusted Ubiquitious Computing SOFTENG’15

Trusted Information Agent (TIA): Technical building blocks
Enhanced Android Platform

Extended Dalvik VM

Java TPM Access Library

(JTSS)

TPM Access Library

IF-MAP

Client Library

for Android

Linux Kernel

IF-MAP Server

Trusted Network

Connect

/ IF-MAP

Remote

Attestation (TPM)

Chain of

Trust (IMA)

Trusted Computing

Group Standards

Kernel Module

uses

API for
Metadata
Exchange

Open
Source
Impl.

conforms to

Early TCG Standard

Part of TNC Standard

(Coppolino, Jäger, Kuntze, Rieke: A Trusted Information Agent for Security Information and Event Management, ICONS 2012)

Jäger, THM Trusted Ubiquitious Computing SOFTENG’15

TIA architecture

GPS
Time

Authority
Privacy CA

Evidence

Generator

IF–MAP

Server

State

Visualiser

Location Trusted Time

Network State

AIK
Trusted Time

Signed Evidence

AIK

(Coppolino, Jäger, Kuntze, Rieke: A Trusted Information Agent for Security Information and Event Management, ICONS 2012)

Jäger, THM Trusted Ubiquitious Computing SOFTENG’15

	Trusted Information Agent

