

PANEL SOFTENG

Software Challenges for New Services/Devices

Petre DINI

Concordia University, Canada China Space Agency Center, China IARIA Organization

petre@iaria.org

2015 BARCELONA

Petre DINI

New Paradigms

- Smart cities
- Smart devices
- Smart technologies
- eGovernment online services

→ Urban computing, apps, embedded software

- Approximate computing [Big Data]
- Eventual consistency [Replicated Data]

→ Storage/computation, data centers management

- Programming paradigms [agent-, context-, network-coding]
- Designing/development paradigms [agile, crowdsourcing]
- Machine learning [knowledge, semantic, taxonomies,]

• etc.

Changes in Technology/Service Lifecycle

Agile methods

Open source

Crowdsourcing

Design security/privacy-driven

Design for accessibility

Adaptive interfaces

2015 BARCELONA

Technology/Maturity Lifecycle

Today's Panelists

- Moderator: Petre Dini, Concordia University, Canada | China Space Agency Center, China
- Panelists
 Laura Semini, Università di Pisa, Italy
 software product lines
- Michael Jäger, Technische Hochschule Mittelhessen, Germany
 - > security- and privacy-aware systems ...software manipulations
- Stepan Orlov, St. Petersburg State Polytechnic University, Russian Federation

> scaling the server, using clouds, and client-side computing

Qs & As

2015 BARCELONA

Petre DINI

6

S. Orlov, N. Shabrov

SOFTENG 2015, Barcelona, Spain

Opportunities for noncommercial web applications to use computational resources

St. Petersburg Polytecnical University Computer Technology in Engineering Dept.

http://equares.ctmech.ru

- More and more software is designed in the form of *Web applications* accessed through a regular Web browser
- Simulation software is not an exception
 - <u>https://simscale.com</u>
 - <u>http://www.wolfram.com/mathematica</u>
 - http://www.wolframalpha.com/
 - https://insightmaker.com/
- We've just added our own
 - http://equares.ctmech.ru/

commercial, runs simulations on server

non-commercial, simulations on client

non-commercial, simulations on server 2

- Why yet another simulation software?
 - Something important is missing in other tools
- What we need
 - Ability to formulate algorithm for numerical experiment in a flexible way
 - Efficiency
 - Considerably faster, than MATLAB/SciLab
 - Ability to avoid extra memory usage in algorithms
 - Accessibility
 - Web-application running in browser
 - Ease of use
 - No algorithm programming. Instead, draw a scheme of data flows between data processing units
 - Ability to use an existing scheme and slightly modify it if necessary
 - Extensibility
 - Open source code
 - Everyone can add missing features that he/she needs

- Example 1 double pendulum
 - There are quasi-periodic and chaotic motions
 - To see that, one should build the Poincare map
 - But it's too difficult in
 - MATLAB, SciLab
 - Mathematica (before version 9)
 - Maple
 - In any system (except XPP) programming is necessary, and sometimes the solver has to be re-implemented
 - And it will work too slow

• Example 2 – Mathieu equation

 $\ddot{q} + \left[\lambda - 2\gamma\cos(2q)\right]q = 0$

- Ince Strutt diagram shows parametric resonance instability areas on plane of parameters
- How student can obtain it?
 - Analytically too difficult
 - Numerically well, the fundamental matrix has to be computed at each pixel, and its eigenvalues – a bit too difficult
 - And it will work too slow if we use MATLAB/SciLab

Choice of technologies

• Server

- Node.js (web-server)
- C++, Qt (computational core running on server)
- MongoDB (server database)
- Jade (HTML generation engine)
- Client
 - HTML 5 (using SSE)
 - D3 (interactive visualization of schemes)
 - MathJax (formulas in documentation)
 - CSS, JavaScript, jQuery, jQueryUI (common things)

Simulation specification

- There is a scheme consisting of *boxes* and *links* (pipes-and-filters design pattern)
 - Links determine data flows
 - Boxes are data processors
 - A box has *ports*; there are *input* and *output* ports
 - A link connects an output port of a box and an input port of some other box
 - Boxes without input ports are *data sources*
 - Boxes without output ports are *data storage*
 - A box can have *parameters*

Simulation specification

- Simulation scheme defines a *data processing system* implementing numerical experiment
- User draws simulation scheme in browser and sends it to server as JSON

• Simple pendulum, one phase curve

• Simple pendulum, phase volume evolution

• Simple pendulum, skeletal curve

Interactive phase portrait

• Ince – Strutt diagram (500 x 500, 6.3 s)

• Double pendulum, Poincare map

• 50000 points, 28.5 s

- Strange attractor
 - Forced Duffing oscillator
 - Interactive parameter change

Colored Mandelbrot set

Interactive pan/zoom

• Chaos in logistic mapping

- Set of points where a function has a positive value
 - http://habrahabr.ru/post/135344/

Scalability problem

- Simulations run on server
- Each client can consume a thread for as long as user wants
 - Some simulations finish fast
 - Some run for a long time
- Currently web server is one 16-cpu node
- What if our it will become popular?

Scalability problem

- Possible solutions
 - Add more servers
 - Who will buy them?
 - Limit user resources on server
 - Limit memory ok
 - Limit CPU time won't help much (user may really need ~1 minute, or maybe more)
 - Move simulations to client
 - Back to desktop applications?
 - Use JavaScript or asm.js? But we're using LAPACK and will add other 3rd party libs
 - Cloud computing
 - Who will pay? Or can it be available for free?

Thank you!

Questions?

http://equares.ctmech.ru

Software Product line/ & feature Oriented Systems

Behaviour analysis

Laura Semini Dipartimento di Informatica Università di Pisa, Italia

Software product lines

- A Software Product Line is a family of software products that:
 - share a common architecture
 - varies in the functionalities offered
- Product line engineering accelerates product development by
 - Exploiting the commonalities among the product line members while
 - Managing the differences (called variabilities)
- The definition of models to specify and analyse Software Product Lines is a current challenge
 - potentially exponential number of different products that can be obtained

Feature-oriented development

- Much of today software is developed using scenarios or use cases
 - Essentially, a use case is the specification of a feature
- Feature = Incremental unit of functionality [def by Pamela Zave]
- Moreover, features are a convenient way to model
 - commonalities and variabilities of Software Product Lines

feature-oriented systems: interactions

- Features may interact in unexpected ways
 - Initially addressed in telecommunication systems

• Features

- 1. are often engineered by people who are not aware of the feature-interaction problem, and
- 2. are used in safety-critical domains.

• Therefore:

- (intended) feature interactions must be very well explained, and
- we should not strive for solutions (for unintended interactions) that work only half the time.

feature diagrams

Dimensions: design vs development perspectives

- Two essentially different perspectives on feature interaction:
- 1. Design:

Here the focus is on understanding requirements with a view towards building a system in which features either do not interact, or do so in a positive way.

2. Development:

The focus here is on code, with a view towards analysing and understanding an existing system.

features: annotation vs composition-based

- Composition-based
 - Composition of behaviours

TARGET ZONE

SOURCE ZONE

- Annotation-based
 - Implemented with directives to the preprocessor

l c	class Stack {	23 #ifdef UNDO	
2		24 boolean undo() {	
3	<pre>boolean push(Object o) {</pre>	25 #ifdef LOCKING	
4 #	fifdef LOCKING	<pre>26 Lock lock = lock();</pre>	
5	Lock lock = lock();	<pre>27 if(lock == null) {</pre>	
5	if(lock == null) {	28 #ifdef LOGGING	
7 #	tifdef LOGGING	<pre>29 log("undo-lock failed");</pre>	
8	log("lock failed for: "+o);	30 #endif	
. 4	fendif	31 return false;	
0	return false;	32 }	
1	}	33 #endif	
2 #	tendif	<pre>34 restoreValue();</pre>	
3 #	tifdef UNDO	35 /**/	
1	rememberValue();	36 #ifdef LOGGING	
5 #	rendif	<pre>37 log("undone.");</pre>	
6	elementData[size++] = o;	38 #endif	
7	/**/	39 }	
\$	}	40	
9		<pre>41 void rememberValue() { /**/ }</pre>	÷.
	tifdef LOGGING	<pre>42 void restoreValue() { /**/ }</pre>	
1	<pre>void log(String msg) { /**/ }</pre>	43 #endif	
2 #	rendif	44)	

Fig. 9.2 Implementing a stack data structure with preprocessor directives; coordination code is implemented by nesting preprocessor directives

Open challenges

- Model behaviour in feature-based systems.
- Look for patterns of feature interaction.
- Designing a "feature-aware computational model"

Trusted Ubiquitious Computing

Michael Jäger

Technische Hochschule Mittelhessen michael.jaeger@mni.thm.de

SOFTENG, April 2015

A User-centric View on Ubiquitious Computing

Jäger, THM

Trusted Ubiquitious Computing

What is Trust?

An entity can be trusted if it always behaves in the expected manner for the intended purpose (Trusted Computing Group).

Claims

- Trust is a key factor for acceptance.
- Misuse and manipulation will happen increasingly.

How to build trusted systems?

Security by Design

- Take cyber-attack and information misuse attempts for granted.
- Model misuse cases, derive security requirements.
- Be concerned about privacy.

Use trusted Components

- Secure network protocols
- Open source software
- Manipulation-protected key components: "Trusted Device"

Trusted Information Agent (TIA): Technical building blocks

(Coppolino, Jäger, Kuntze, Rieke: A Trusted Information Agent for Security Information and Event Management, ICONS 2012)

TIA architecture

(Coppolino, Jäger, Kuntze, Rieke: A Trusted Information Agent for Security Information and Event Management, ICONS 2012)