

PANEL SECURWARE/DEPEND

Security and Trust in IoT-based Complex Systems

Today's Panelists

 Moderator: Petre Dini, Concordia University, Canada || China Space Agency Center, China

Panelists: Giray Kömürcü, Tubitak-Bilgem, Turkey

Possible cheap security solutions on Internet of Things based on Physical Unclonable Functions

Vito Santarcangelo, Centro Studi S.r.I., Italia

ISO 27001: 2013 for the development of security policies in IoT"; "IoT Security: The Shodan case

- Curtis Busby-Earle, The University of the West Indies at Mona, Jamaica
- security concerns related to the emergent behaviours that would result from the unification the many and varied "components" of an IoT
- Vladimir Muliukha, Peter the Great St.Petersburg Polytechnic University, Russia vision of security issues of distributed systems; on the difference between "Confidentiality" and "Security"

Qs & As

Petre DINI

Securware 2015

Security and Trust in IoT-based Complex Systems

Curtis Busby-Earle, PhD

Internet of Things?

• Ubiquitous Computing

 "...to unify the multiple interfaces to disparate resources loosely connected on a variety of networking mediums"

• Networking

- protocols, devices, apps, cost
- opened up the possibility of computer technology receding into the environment

PNoTs

Emergent Behaviour

- When combined, how do/will these "systems" behave?
- Must consider
 - security and usability
 - security and performance
 - security and interoperability/interference
 - security and privacy
 - security and social interactions (e.g. networks of PNoTs)

Curtis Busby-Earle, PhD

Port existing solutions?

- Firewall on every device?
- IDS on every device?
- Anti-malware on every device?
- Challenge response protocol implemented on every device?
- Encrypt/decrypt communication on every device?
- ...

Maybe, not so practical!

New approaches

- Must develop new approaches
 - more dynamic must be able to deal with unknown, emergent behaviour
 very difficult!

Must truly build security <u>into</u> "things"

Curtis Busby-Earle, PhD

What's next?

Your thoughts and ideas!

Curtis Busby-Earle, PhD

IoT Security : The Shodan case

Vito Santarcangelo Applied Research Engineer Centro Studi S.r.l.

Centro Studi

Process Development & Applied Research

Venice, 26 August 2015

0

The IoT Scenario

- IoT is the network of physical objects or "things" embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with other connected devices
- Examples of applications : Media, Surveillance, Building and home automation, Environmental monitoring, Infrastructure management, Energy management, Medical and healthcare systems

loT

https://datasciencebe.files.wordpress.com/2014/11/internet-of-things.jpg

Common Problems

A common network... common Problems!

Examples of security problems for IoT devices:

- USE OF DIRECT DEVICE PORTFORWARDING
 INSTEAD OF VPN ACCESS
- DIRECT REMOTE ACCESS (eg. Synology QuickConnect) INSTEAD OF VPN ACCESS
- USE OF DEFAULT USER AND PASSWORD CREDENTIALS
- FIRMWARE's BUGS (VERSION OUTDATED)

THE SHODAN CASE

SEARCH ENGINE

Google finds web sites - Shodan finds devices

SHODAN

www.shodan.io

Explore the Internet of Things

Use Shodan to discover which of your devices are connected to the Internet, where they are located and who is using them.

Monitor Network Security

Keep track of all the computers on your network that are directly accessible from the Internet. Shodan lets you understand your digital footprint.

See the Big Picture

Websites are just one part of the Internet. There are power plants, Smart TVs, refrigerators and much more that can be found with Shodan!

Get a Competitive Advantage

Who is using your product? Where are they located? Use Shodan to perform empirical market intelligence.

EXAMPLE OF SEARCH

by features

🔏 SHODAN 🛛 🤇	OpenSSL 1.0.1f		Search	
		*	\vee	
Services		Index of /		
НТТР	502	83	HTTP/1.0 200 OK	
HTTPS	261	Free SAS Added on 19.04.2014	Date: Sat, 19 Apr 2014 15:35:01 GMT	
HTTP Alternate	13	Nantes	Server: Apache/2.4.7 (Unix) PHP/5.5.9 OpenSSL/1.0.1f mod_perl/2.0.8-dev Perl/v5.16.3	
HTTP	6	xbn44-7 02 455 442 474 5 oxad.net	Content-Length: 2380	
HTTPS Alternate	2	xbn44-	Content-Type: text/html;charset=ISO-8859-1	
Top Countries		Index of /		
United States	169	270 047 000 187 Limestone Networks	HTTP/1.0 200 OK	
Germany	132	Added on 19.04.2014	Date: Sat, 19 Apr 2014 14:59:05 GMT	
Poland	70	Dallas	Server: Apache/2.4.9 (Win32) OpenSSL/1.0.1f	
Switzerland	50	dataoptor lawboot com.br	Content-Length: 307	
United Kingdom	41		Content-Type: text/html;charset=UTF-8	
		Access forhidden		
		Access forbidden! 84.55.101.167	HTTP/1.0 403 Forbidden	
		Linux 3.x Vodafone DSL	Date: Sat, 19 Apr 2014 08:11:10 GMT	
		Added on 19.04.2014	Server: Apache/2.2.26 (Unix) mod_ssl/2.2.26 OpenSSL/1.0.1f DAV/2 PHP/5.5.9	
		📕 Frankfurt Am Main	Vary: accept-language,accept-charset	
		dslb-for occ tot too	Accept-Ranges: bytes	
		1 1	Transfer-Encoding: chunked	

Content-Language: en

Heartbleed is a bug present in **OpenSSL versions 1.0.1 through 1.0.1f**.

EXAMPLE OF SEARCH

by vendor

🔏 SHODAN	axis		
Services			
FTP	8,254		
Telnet	1,454		
нттр	104		
SNMP	73		
SMB	29		

Top Countries

United States	2,699
France	936
Finland	750
Mexico	515
Spain	495

100 010 00 00 Cablemas Telecomunicaciones SA de CV Added on 27.02.2015 Acapulco

220 AXIS 207 Network Camera 4.40 (Aug 28 2006) ready. 530 Login incorrect. 214-The following commands are implemented. USER QUIT PASS SYST HELP PORT PASV LIST NLST RETR STOR TYPE MKD RMD DELE PWD CWD SITE CDUP RNFR RNTO NOOP EPRT EPSVr 214 End of list. 503 Bad sequence of commands.

472 0 77 400

Comcast Business Communications Added on 27.02.2015 Southborough

NewEngland. ** 'ness.net

220 AXIS 214 PTZ Network Camera 4.49 (Oct 05 2009) ready. 530 Login incorrect. 214-The following commands are implemented. USER QUIT PASS SYST HELP PORT PASV LIST NLST RETR STOR TYPE MKD RMD DELE PWD CWD SITE CDUP RNFR RNTO NOOP EPRT EPSVr 214 End of list. 503 Bad sequence of commands.

220 AXIS 207W Network Camera 4.44.2 (Dec 14 2009) ready. 530 Login incorrect. 214-The following commands are implemented. USER QUIT PASS SYST HELP PORT PASV LIST NLST RETR STOR TYPE MKD RMD DELE PWD CWD SITE CDUP RNFR RNTO NOOP EPRT EPSVr 214 End of list. 503 Bad sequence of commands.

220 AXIS P3344 Fixed Dome Network Camera 5.07 (Oct 02 2009) ready. 530 Login incorrect. 214-The following commands are implemented. USER QUIT PASS SYST HELP PORT PASV LIST NLST RETR STOR TYPE MKD RMD DELE PWD CWD SITE CDUP RNFR RNTO NOOP EPRT EPSVr

100.170.155.0 Uninet S.A. de C.V. Added on 27.02.2015

in too too too o iyn.prodinfinitum.com.mx

Linux 2.4-2.6 Telecom Italia Added on 27.02.2015

SHODAN MAP

POPULAR SHODAN RESEARCH QUERIES

- default password Finds results with "default password" in the banner; the named defaults might work!
- Router w/ Default Info Routers that give their default username/ password as admin/1234 in their banner.
- webcamxp one of the best dorks for ip cameras/webcams
- D-Link Internet Camera D-Link Internet Camera DCS-5300 series, without authentication.
- IPads IPads. Think different. Think no security.
- cisco-ios last-modified Finds Cisco-IOS results that do not require any authentication ;-)
- Snom VOIP phones with no authentication A list of Snom phone management interface without authentication
- Anonymous access granted title says it all, mostly FTP servers would be visible
- iOmega NAS Devices (no passwords) A bunch of external hard drives without passwords attached to the interbuttz

EXAMPLES

Status	Account	Network	DSSKey	Features	Setting
	Version 🕜				
	Firmware Version		6.71.0.149		
	Hardware Version		4.0.0.1		
	Network 🕜				
	Internet Port		IPv4		
	IPv4 🕜				
	WAN Port Type		DHCP		
	WAN IP Address		1		
	Subnet Mask		255.255.255.0		
	Gateway		10.172.0.1		
	Primary DNS		10.172.0.90		
	Secondary DNS		192.168.3.150		
	Network Common	0			
	MAC Address		001565114190		
	Link Status		Connected		
	LAN IP Address		0.0.0.0		

1763-L16DWD B/12.00

Minimi

ze	Home	
	Device Name	1763-L16D
	Device Description	MicroLogix
	Device Location	
	Ethernet Address (MAC)	00-1D-9C-/
	IP Address	166.239.20
	O/S Revision	Series B FF
	HTML File Revision	1.10
	Current Time	Aug 18 201
	CPU Mode	Remote Ru

Aficio MP 2851 Web Image Monitor

Printer:

Energy Saver Mode Warming Up...

SOLUTIONS

- Robust authentication credentials
- Firmware upgrade
- Use of OTP (One Time Password) Auth Method
- Security devices as Firewall, IDS and IPS
- VPN Networks

For more information and dataset visit

http://www.researchgate.net/profile/Vito_Santarcangelo

Thanks for the attention!

PANEL

ISO 27001:2013 for the development of security policies in IoT

Vito Santarcangelo Applied Research Engineer

Centro Studi S.r.l.

Process Development & Applied Research

餐 gruppo orizzonti holding

Venice, 26 August 2015

0

A common network... common Problems!

IoT Scenario

IoT is the network of physical objects or "things" embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with other connected devices

ISO 27001:2013 AND ANNEX A

ISO/IEC 27001

Second edition 2013-10-01 ISO 27000 : Fundamentals and vocabulary

ISO 27001 : ISMS Requirements (normative)

ISO 27002 : ISMS Code of practice (guide)

Information technology — Security techniques — Information security management systems — Requirements

INTERNATIONAL

STANDARD

Technologies de l'information — Techniques de sécurité — Systèmes de management de la sécurité de l'information — Exigences

ISO 27001's Annex A

list of 114 controls /best practices (35 control objectives, 14 key points from A.5 to A.18)

POLICIES FOR IoT

A.6 Organization of information security

A.6.2 Mobile devices and teleworking (to enable connection from mobile devices through teleworking infrastructure)

A.9 Access control

- A.9.1 Business requirements of access control (to establish an access control policy to limit access to information)
- A.9.2 User access management (to prevent unauthorized access to systems and services)
- A.9.3 User responsibilities (user must safeguard their authentication information)
- A.9.4 System and application access control (secure log-on procedures)

A.10 Cryptography

A.10.1 Cryptographic controls (to ensure proper and effective use of cryptography to protect the confidentiality, authenticity and/or integrity of information)

POSSIBLE IMPLEMENTATION

- Robust authentication and periodically change of the credential
- 2) Use of OTP Authentication
- 3) Access based on IP Filtering
- 4) Record the generality of connected users and IP
- 5) Use of VPN Network

POLICIES FOR IoT

A.12 Operation security

A.12.2 Protection from malware (controls against malware)

A.13 Communication security

- A.13.1 Network security management (network controls, security of network services, segregation in networks)
- A.13.2 Information transfer (information transfer policies and procedures)

POSSIBLE IMPLEMENTATION

- I) Use VLANs
- 2) Install Firewall, Antivirus Gateway
- 3) Install IDS and IPS (intrusion prevention system)

For more information and dataset visit

http://www.researchgate.net/profile/Vito_Santarcangelo

Thanks for the attention!

Peter the Great St.Petersburg Polytechnic University

Static and Dynamic Aspects of Distributed Cloud Security Systems

Vladimir Muliukha

Institute of Applied Mathematics and Mechanics,

Telematics Department

SECURWARE 2015, August, 26 2015 – Venice, Italy

Access Services in Real World: Subject-Object Model

"subject" buy a ticket and access to "object", but constantly watched by an "object curator"

Access Control in Cloud Environment

Access relationship and resources merges together by access **policy semantics**: user (or subject) may try to have access to resource and policy "curator" control "behavior" of the subject and feedback replay from the object.

Access control policy can be divided into **static** and **dynamic** parts:

- Static part (known as mandatory) set by administrator;
- Dynamic one is content (semantic, behavior, data) dependent.

to merge static and dynamic aspects of access policy firewall in cloud environment should have **self-aware** feature and provide security **as a new kind of cloud service.**

Proposed Security Conveyor Architecture

Dynamic Security Monitor

Security policy semantics form invariant essence of access rules transformations (3,4,5,6).

Implementation: Hypervisor with Stealth Firewall

Advances: firewall **configuration** (hardware and software) **is scaled** according to current cloud state.

- domS is a firewall virtual machine
- Firewall is "stealth" for object (interfaces have no IP or MAC addresses)
- Firewall controls VC traffic (between VMs and from external resources)
- domS is using Hypervisors resources – cores/memory
- domS doesn't require to change cloud or VM configuration. The only change is hypervisor network subsystem.

Architecture of a Secure Cloud Computing Environment

- **FW** hardware firewall;
- **VFW** virtual firewall;
- FSCS Cloud Firewall security control system
- VM virtual machine
- **CIC** cloud controller
- **CC** cluster controller
 - storage controller

- Hypervisor provides VFW services
- Private cloud protected by FW
- **Dynamic access policy forms by FSCS** and replicated to all firewalls

Security Service: Trade-off between Confidentiality and Availability

Is HIGHER SECURITY In IoT With PHYSICAL UNCLONABLE FUNCTIONS POSSIBLE?

Giray Kömürcü

SECUREWARE'15 2015

What is PUF?

- Physical Unclonable Function
- Unique capability of generating chip specific signatures
- Uncontrollable components in the manufacture process
 - Gate delays, wire delays, threshold voltages...
- Applicable for both ASIC and FPGA
- Different types of PUFs have been developed
 - Ring Oscillator PUF, Arbiter PUF, SRAM PUF, Glitch PUF etc.
- Uniqueness, Robustness, Unpredictability and Unclonability is the key features
- Low cost solutions

RO-PUF

- Ring Oscillator PUF
 - Depends on the delay differences of identical structures
 - Oscillation frequencies of 2 identical ring oscillators are compared

- '1' is generated if freq(RO1) < freq(RO2)
- '0' is generated if freq(RO1) > freq(RO2)

Usage Areas

IP protection

- Design theft through FPGA bitstream duplication
- Secret Key Generation and Storage
 - Eliminates the problem of Secret Key Sharing and Non-Volatile-Memory requirements
- IC Identification and Authentication
 - ID generation, authentication through Challenge-Response Pairs

Challenge Response Pair Concept

- Outputs are generated depending on the inputs to the system, as well as device mismatches
- Used in authentication
- Some PUF types support CRP property
- Conventional RO-PUFs support limited number of CRPs

Authentication Using PUFs

Authenticity of devices is important in IoT

PUFs in IoT

- IoT is vulnerable against attackers since it is an open environment
- Authentic devices may be replaced with replicas
 - Secure authentication is critical
- Secret Key sharing may threaten the system security
 - Especially if periodic key deployment is required
- PUFs can help improving the system security with low additional cost

Conclusion

- PUFs have the unique capability of generating chip specific signatures
- PUFs can be used to supply higher security for low cost in several areas including IoT