
ICSEA 2015

Monday, November 16, 2016
Barcelona, Span

Panel: Quo Vadis Software Engineering?

Moderator
Roy Oberhauser, Aalen University, Germany

Panelists
Kavi Krishna, University of North Texas, USA

Radek Koci, Brno University of Technology, Czech Republic
David Musliner, Smart Information Flow Technologies (SIFT), USA

Herwig Mannaert, University of Antwerp, Belgium

roy
Rectangle

ICSEA 2015 Panel discussion:
Quo Vadis Software Engineering?

SUSTAINABILITY

&
DISRUPTORS

Roy Oberhauser
Aalen University

Germany

 U.S. software industry revenue 2012: $425 billion
 Cost of bugs to the U.S. economy: $60 billion annually
 Cost and criticality of software to society
 Consider code volume and typical defect rates
 Bugs/vulnerabilities have increasing value
 Greater usage/reliance on software systems
 More data behind any single breach
 Misuse market for discovered defects
 Widespread reuse/dispersement of (defective) code
 Huge dependency chains (e.g., Heartbleed 1/2/...)

Correction work costs pale in relation to

indirect costs and risks of a bug

2

SE Quality and Maintenance Problem?

© 2013 Roy Oberhauser

 What are SW engineers doing?
 U.S. SW industry employment distribution:

Let’s assume 75% doing maintenance!
3

SE Employment Problem?

© 2015 Roy Oberhauser

[Casper Jones 2006: The Economics of
Software Maintenance in the Twenty First

Century]

In 2011 we are back to level seen in 1986.
And unchanged at 1% of 23 year olds.

 4

SW Engineer Sustainability Problem?

© 2015 Roy Oberhauser

[adapted from Ed Lazowska, University of Washington]

U.S. BS CS Degrees

Will/can U.S. even produce 400K grads in 2020?
 5

SW Engineer Sustainability Problem?

© 2013 Roy Oberhauser

Hadi Partov Bureau of Labor Statistics
http://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/

 Increasing reuse of software
 SW engineers primarily becoming “system

integrators”?
 Building business value fast - not from scratch
 Reuse via frameworks mostly (re)configuring & glueing?
 Less “expertise” and specialty, more generalists?
 Software market development:

craft – chaos – segregation – consolidation - saturation?
 Apps in Stores: 1.6M Google, 1.5M Apple.

Market saturation reached? Do we need a billion apps?
 >14K Web APIs

 Users also integrating: via IFTTT

6

SE Disruptors? Reuse & Integrators

© 2015 Roy Oberhauser

 Self-configuration
 Self-healing
 Self-optimization
 Self-protection
 Self-maintenance
 Self-...
 Automated software engineering
 Natural language programming
 Technically adept society and demographics

7

Possible SE Disruptors? The rise of
Autonomic properties Self-X properties

© 2015 Roy Oberhauser

 AI algorithms plus massive data
 Data on how we have solved programming tasks

 Creativity: how much of programming today is
actually novel ideas and talent?
 80% of software no brain work [Ivar Jacobson 2007]
 Patterns: codify generalized solutions to problems
 Most programming is manual drudgework
 No tricky code wanted! (for maintenance reasons)

 If end-users give AI their goals, what is hard?
 E.g., declarative approaches...

8

SE Disruptor?
Self-programming becomes viable

© 2015 Roy Oberhauser

Recursive software self-improvement?
A technological singularity for the SE domain?

May software engineers

automate themselves out of a job?
 9

Software is eating the world... [Marc Andreessen]

© 2013 Roy Oberhauser

Will software
eat itself?

 Intentionality and our systems
 Dark stakeholders will remain
 Automation of misuse and “control”: by/for whom?

 “Almost all grave software problems can be
traced to conceptual mistakes made before
programming started”
 - Prof. Jackson of MIT in Scientific American June 2006
 So perhaps the focus for SW engineers lies beyond the programming

 There will always be room for creative SE...
just perhaps not so many jobs openings?

 How will/should this automation impact how
we educate the next generation of software
engineers?

10

The Age after the SE Disruptors...

© 2015 Roy Oberhauser

Quo Vadis Software Engineering?

Krishna M. Kavi
Professor and Director

NSF Net-centric and Cloud Software and Systems
Industry/University Cooperative Research Center

University of North Texas

Where am I coming from?
Unde veni et quo vadis?

 Ex quo venio?
Nearly two decades ago dabbled in Formal Methods
Concurrency models using Petri-nets and dataflow graphs
Real-time software systems

Served as a department chair and was involved in ABET curricular issues
Talked with colleagues who teach SE type courses

More recently, my interests (from software engineering viewpoint) are
 non-functional properties
 Security
 Performance Engineering

Quo Vadis Software Engineering?

What is lacking in SE, particularly in terms of education but also in terms of
research.

• We are not emphasizing non-functional properties at the same level as we do with functional properties
• We are not emphasizing concurrency and security as first-class design aspects
• We need to include non-functional properties throughout the SE life cycle
• We need to develop processes and tools that help with verification of non functional properties

Consider the latest ACM/IEEE recommendation for Software Engineering education

non

ACM/IEEE Recommendations

Definition: Software engineering is the discipline concerned with the application
of theory, knowledge, and practice to effectively and efficiently build reliable
software systems that satisfy the requirements of customers and users.

What do these terms - effectively and efficiently - mean?
Should they include non-functional requirements?
Should they include the use of concurrency for efficiency?

SE/Software Processes

Just a mention of
“environment”

 Topics:
[Core-Tier1]
• Systems level considerations, i.e., the interaction of software with its intended

environment
• Introduction to software process models (e.g., waterfall, incremental, agile)
 Activities within software lifecycles
• Programming in the large vs. individual programming

[Core-Tier2]
• Evaluation of software process models

[Elective]
• Software quality concepts
• Process improvement
• Software process capability maturity models
• Software process measurement Should quality include

how well non-functional
requirements are met?

ACM/IEEE Recommendations

SE/Requirements Engineering

How to elicit non-
functional requirements

Topics
[Core-Tier1]
• Describing functional requirements using, for example, use cases or users stories
• Properties of requirements including consistency, validity, completeness, and feasibility

[Core-Tier2]

• Software requirements elicitation
• Describing system data using, for example, class diagrams or entity-relationship diagrams
• Non-functional requirements and their relationship to software quality (cross-reference
 IAS/Secure Software Engineering)
• Evaluation and use of requirements specifications

[Elective]
• Requirements analysis modeling techniques
• Acceptability of certainty / uncertainty considerations regarding software / system behavior
• Prototyping
• Basic concepts of formal requirements specification
• Requirements specification
• Requirements validatio

How to analyze non-
functional requirements?

Non-functional
requirements may
impact the design itself

ACM/IEEE Recommendations

SE/Software Design

Should architecture
design account for
“concurrency” and
other non-functional
properties?

Topics
 [Core-Tier1]
• System design principles: levels of abstraction (architectural design and detailed design),

separation of concerns, information hiding, coupling and cohesion, re-use of standard structures
• Design Paradigms such as structured design (top-down functional decomposition), object-oriented

analysis and design, event driven design, component-level design, data-structured centered, aspect
oriented, function oriented, service oriented

• Structural and behavioral models of software designs
• Design patterns

[Core-Tier2]
• Relationships between requirements and designs: transformation of models, design of contracts,
 Invariants
• Software architecture concepts and standard architectures (e.g. client-server, n-layer, transform
 centered, pipes-and-filters)
• Refactoring designs using design patterns
• The use of components in design: component selection, design, adaptation and assembly of
 components, components and patterns, components and objects (for example, building a
 GUI using a standard widget set)

Performance design patterns
Concurrency patterns
Security patterns?

ACM/IEEE Recommendations

Where Should Software Engineering Be Going
 Quo ire Software Engineering?

Consideration of Sercurity and Concurrency as a fundamental design concepts
Emphasize Non-Functional Properties along with Functional
 Requirements elicitation
 Architecture design
 Design Patterns
 Life cycle
 test generation
 New tools
Component Engineering to meet non-functional requirements

Where Should Software Engineering Be Going
 Quo ire Software Engineering?

Research

 Concurrency modeling -- not just swim lanes

 -- my need to integrate Petri nets with UML and other modeling systems

 Concurrency testing -- replay synchronization orders

 -- detecting race conditions, deadlocks and livelocks

 -- load balancing, etc

 Architecture -- how to describe non-functional aspects in the architecture

 Design patterns -- concurrency patterns

 -- Performance patters and anti-patterns

 -- security patters

 Life cycle -- not sure if we need to change any phase in a life cycle

 -- may be software maintenance – and monitoring?

 Tools -- to capture non-functional requirements

 -- aid in design, testing ..

Where Should Software Engineering Be Going
 Quo ire Software Engineering?

Architecture:
 Which architecture is better to handle concurrency, security, reliability..
 SoA?
 Layered?
 Client-Server
 …....

Where Should Software Engineering Be Going
 Quo ire Software Engineering?

Life Cycle
 In terms of security
 May need to focus on monitoring after deployment

 patches and complete upgrades
 Can this be viewed as a part of maintenance?

 May be similar phases for other non-functional properties
 New processors may require changes to deployed software

 redesign, or adapt

Where Should Software Engineering Be Going
 Quo ire Software Engineering?

• Software complexity is increasing

• Not only functional complexity but also in terms of non-functional requirements

• Need to take into account and mange non-functional requirements throughout

the software engineering processes

• Component engineering must address non-functional requirements

Software Engineering Panel

Dr. David J. Musliner
musliner@sift.net
(612) 325-9314

For other staff and projects, please see

www.sift.net

Smart Information Flow Technologies

mailto:musliner@sift.net
http://www.sift.net/

Who are we?

2

• 35 person small business based
in Minneapolis, branches in
Boston, D.C., Dallas, San Diego.

• 15 years in business.
• $7M+ per year in revenues.
• 30 advanced degrees (Computer

Science, Psychology, Control).
• 150+ years combined industrial

R&D experience.
• Customers include DARPA,

NASA, NIST, AFRL, ARL, ONR,
OSD, AFOSR, Lockheed, BBN,
BAE Systems...

• Research spanning computer
science, human centered
systems, and beyond.

Downtown Minneapolis

Lexington, MA

SIFT Technology Thrust Areas

• Cyber security.
• Autonomous systems.
• Formal verification and statistical model checking.
• Natural language and information extraction.
• Human cognition and performance.
• Etiquette and socially-aware systems.
• Dynamic information management & presentation.

3

Cyber-Security

• Tools for developing safe software.
• Fully autonomous vulnerability detection and

mitigation, for deployed software.
• Attack detection and plan recognition.
• Mission-aware cloud adaptation and defense.
• Agents for cyberwar simulation and traffic

generation.

4

HACKAR: Helpful Advice and Code Knowledge for
Attack Resistance

• Detects and diagnoses vulnerabilities in programs at
development-time.

• Generates models of software as hierarchical workflows
to find the causes of vulnerabilities, explain problems, and
suggest code alternatives.

• Eclipse plug-in collaborates with programmer.

5

• Speeds safe programming
2X, fault repair 5X.

• Vulnerability rate reduced
80%.

• ONR funded.

6

• Reactively and proactively use fuzz-testing and other tools
to detect and characterize software vulnerabilities.

• Adaptively repair or shield vulnerabilities, preventing future
exploitation.

• Fuzzbuster has automatically found and shielded dozens of
vulnerabilities.

 Intelligently Guided Adaptive Immunity

Innate
mechanisms
stop exploit

Fuzz - testing Adaptation
Generation

Exemplar
Proactive

Refined
vulnerability

model

Fuzzbuster
synthesizes

possible
exploit

Reactive

• Decision-theoretic meta-control
focuses attention across applications
and vulnerabilities.

 DARPA CRASH program.

7

• Symbolic analysis of binaries to identify vulnerabilities and
craft exploits.

• Binary rewriting methods to prevent exploitation.
• Massively distributed.
• Fully autonomous.

 Cyber Reasoning System

• Chronomorphic binaries.
• Rewrites and moves gadgets

repeatedly, at runtime.
• Defeats ROP and BROP

attacks.
• Proof of concept works directly

on binary.

8

Attack Detection and Intent Recognition
• Scyllarus event correlator accumulates low-level

cyber security events and alerts into higher-level
incident reports.
• Reduces alert volume 1000X+.
• Computes criticality and severity.
• DARPA Integrated Learning, Scalable Network

Monitoring programs.
• Transitioned to ISC8/CyberAdapt commercial

network appliance.
• YAPPR probabilistic plan recognition system

analyzes event traces to compute likely attacker
plans.
• DARPA Self-Regenerative Systems, Integrated

Learning, Mission-oriented Resilient Clouds programs.

Quo Vadis Software Engineering ?

Prof. dr. Herwig Mannaert

1

Software Engineering

• Huge achievements I will not talk about …
• Many new evolutions I will not talk about …
• Many new technologies I will not talk about …

• I will talk a bit about a crucial challenge and

some basic needs/concepts to address this

2

The Law of Increasing Complexity
Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

Software Challenge (one of …)

3

• “An IS methodology is a methodical (systematic)
approach to IS planning, analysis, design,
construction and evolution.” (Olle, 1988)

• More than 1000 exist...
- BON, Booch, BOOM, Catalysis, CBD/e, Coad/Yourdon, COMMA
- CRC, Convergent Engineering, Demeter, DOORS, DOOS
- EPA, EROOS, Fusion, Goofee, HOOD, IDEA, ION, KISS
- MERODE, MOSES, MWOOD, Object COMX, Objecteering
- Objectory, OEP, Octopus, OMT, OOAD/OOIE, OOA/RD, OOBE
- OOCL, OOHDM, OOram, OOSC, OOSD, OOSE, OOSP
- Open, OSA, PAUD, ROAD, ROPES, RUP, Scrum, Skill-Driven

Design
- SDL, Shlaer & Mellor, Softstar, SOMA, SOMT, Syntropy, XP

Development Methodologies

4

Methodology

Technique

Tool

Process

Product

Taxonomy of Methodologies

5

• Adoption:
“Many organizations claim that they do not use any
systems development methods.” (Huisman & IIvari, 2002)

• Vagueness:
- “Low coupling” is still vague, “Information hiding” was

formulated in 1972 (Parnas), but still needs refining
- “We haven’t found the fundamental laws in software

like in other engineering disciplines” (Kruchten, 2005)
• Limited, unsystematic application:

- Technical difficulties
- Project management difficulties

Issues with Methodologies

6

Use Engineering Fundamentals

• Stability in system dynamics:
- Confining the impact of adding or modifying

modules is basically a systems stability issue
• Entropy in statistical thermodynamcis:

- Narrowing down the microscopic cause of a
macroscopic error is basically an entropy issue

• Hierarchical modular architetures:
- Having an integrated zoomable view on billions of

constituent parts is basically a modularity issue

7

Other disciplines have mastered the
unambiguous hierarchical assembly structure

of large amounts of fine-grained static modules …

Use Engineering Fundamentals

Quo Vadis Software Engineering?
Expectations and Reality

Radek Kočı́

Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 66 Brno, CZ

koci@fit.vutbr.cz

ICSEA 2015, 15.-19.11.2015, Barcelona, Spain

Expectations

What does customer expect?

• releases are valid and satisfy all needs

• the terms are kept (deadlines, budget, . . .)

• the customer dos not care about development process

What does developer expect?

• releases are valid and satisfy reasonable (minimal) set of
needs

• the terms are kept (deadlines, budget, . . .)

• the developer should care about development process

Questions

• the customer needs not to care about processes – really?

• the developer needs not to care about real needs – really?

• are there common techniques used in methods that keep
to the terms?

Quo Vadis Software Engineering? 2 / 4

Answers. Answers?

The customer/developer needs not to care – really does not?

• it is not truth

• nowadays, the problem domains and the development
processes are very complex and we need to have a
knowledge

• the key activity – we need to care how to get real (valid)

requirements

Are there common techniques for development methods?

• iterative and incremental development processes

• modeling

• automated model transformations, code generation

• model continuity – executable models that can be
deployed as a part of target system

Quo Vadis Software Engineering? 3 / 4

Teaching Software Engineering

What do students (a lots of them) expect?

• software engineering = many words about nothing

• the best approach is agile approach, whereas agile
means chaotic approach having no rules

• it is good to know about UML

What/How should we teach?

• timeless principles
• how to separate timeless principles from outdated ones?

• cohesion of teaching and software engineering research
and practice

• to get the best practices
• participation in research, practice – is it realizable?

• helping students learn how to learn
• participation in research, practice – is it realizable?

• students have to be active in real problems – how to do it?

Quo Vadis Software Engineering? 4 / 4

	Quo Vadis Software Engineering?
	Where am I coming from?�Unde veni et quo vadis?� Ex quo venio?
	Quo Vadis Software Engineering?
	ACM/IEEE Recommendations
	ACM/IEEE Recommendations
	ACM/IEEE Recommendations
	ACM/IEEE Recommendations
	Where Should Software Engineering Be Going� Quo ire Software Engineering?
	Where Should Software Engineering Be Going� Quo ire Software Engineering?
	Where Should Software Engineering Be Going� Quo ire Software Engineering?
	Where Should Software Engineering Be Going� Quo ire Software Engineering?
	Where Should Software Engineering Be Going� Quo ire Software Engineering?
	Slide Number 1
	Who are we?
	SIFT Technology Thrust Areas
	Cyber-Security
	HACKAR: Helpful Advice and Code Knowledge for Attack Resistance
	Slide Number 6
	Slide Number 7
	Attack Detection and Intent Recognition
	Quo Vadis Software Engineering ?�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Use Engineering Fundamentals
	Slide Number 8

