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Infinite-Dimensional Adaptive
Control Theory

“Physiss  1s like sex: sure, 1t may give
some practical results, but that's not

why we do 1t.”
— Richard P. Feynman

In a tile motif on the back of the Ross Dress For Less building

on Lake Ave, Pasadena, CA
2




F-16 Flexible Structure Model:
Fluid-Structure Interaction

USAF-Edwards AFB
Flight Test Center




Many Emerging Solutions
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Hypersonic Aircraft X51A Wave Rider

Reality

6 Minutes at Mach 5.1

The X-51A WaveRider is an unmanned, autonomous supersonic combustion,
ramjet-powered hypersonic flight-test demonstrator for the U.S. Air Force.
The X-51A demonstrates a scalable, robust endothermic hydrocarbon-fueled
scramjet propulsion system in flight, as well as high temperature materials,
airframe/engine integration and other key technologies within the
hypersonic range of Mach 4.5 to 6.5.




INNASA Space Launch System

SLS 130 Metric Ton
Evolved Configuration

Vehicle Dynamics

Az + bu

T
y = Cxr+du

Bending Filters

Highpass Filter

Lowpass Filter

Adaptive Augmenting Control Algorithm

NASA MSFC




Evolving Systems=
Autonomously

Assembled

Active Structures

Or Self-Assembling
Structures,

which Aspire to a
Higher Purpose;
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& Dynamics
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Flow Control of Wind
Turbine Aerodynamics
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Principles of Wind Turbine Aerodynamic Lift




Smart Grids:
Virtual Interconnecting Forces

SMART GRID Smart appliances

A vision for the future — a netwark Can shut off in response to Demand management
of integrated microgrids that can Irequency fluctuations
monitor and heal itself

Use can be shifted to off
peak times to save money,

?'%H Solar panels
-

&b

Disturbance

In the grid
Processors

Execute special protection e Detect fluectuations and
schemes in microsaconds Q disturbances, and can signal
for areas to be isolated

W
peak times could be stored ] .
in battertes for later use il ' I

d ] 11 ,4%, -~ QiR
Wind farm . ) ‘ 2 Sl l -r”' f\_‘

Generators ; e '
Energy from small generators
and solar panels can reduce
overall demand on the grid

isolated microgrid
!

= = Central power

Industria phant

plant

“It is surprising how quickly we replace a human operator
with an algorithm and call it SMART”




POWER SYSTEM AS
DISTRIBUTED PARAMETER SYSTEM
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“Simplicity” via Infinite
Dimensional Spaces

ot
X(0)=x,e D(A)c X = X(t,w,) =U(t)X,; vt >0

%/_J

y=Cx=[@x (€% . (€]

= Ax+Bu=Ax+ > bu
=1

?7
J. Wen & M.Balas, “Robust Adaptive

“Boil Away” all the special properties o Control in Hilbert Space *,

y p p p J. Mathematical. Analysis and
Applications, Vol 143, pp 1-
26,1989.

C, —Semigroup of Bounded OperatorsU (t) :
J. Wen & M.Balas ,"Direct Model

U (t + S) =U (t)U (S) (Semigroup property) Reference Adaptive Control in
d Infinite—l?imensif)na} Hilbert Spac.e,"
U ()= AU =UOA(AgeneraesUi() o R

. K. S. Narendra, Ed., Academic Press,
U (t)X, ——=5—> X, (‘continuousat t = 0) 1987 1




The Devil Lurks in the Details




Semigroups

Closed Linear
Operator

2 _ i
Solve{ ot = x(t)=U@®)x, [dimX =N <oo
X(0) = x, € D(A)

=U(t)=¢e" =

C, —Semigroup
U (t) : X — X bounded operatorst > 0

Generator : Ax=lim_ > (t)tx‘ X with D(A) = {x/lim

exists }densein X

t—>0+

LU (t)) = (Al — A" = R(1, A) Resolvent Operator
LL(R(A, A) =U (t)

LaPlace Transform {




Spectrum of A

Resolvent Set p(A) ={1/R(4,A): X — X bounded linear op on X }
Spectrum o (A) = p(A) =0, (AU (A UG, um (A

poin

G oo (A) =111 R(A, A) isNOT 1-1}={1/3¢ = 0> 1¢ = Ad}
o (A) = {1/ R(A, A)isl-1,butitsrangeis only densein X |
G sau (A = {2/ R(A, A) is1-1, but rangeis a proper subspace of X |




Example: Heat Ditfusion

b(z) € D(A) = {x/smooth and BC:x(t,0) = x(t,!) = O}
c X =L2(Q)

with (x, y) jﬂ X(t) y(t)dt

X(0) = x, € D(A)

y=(c,X); ¢(2) € D(A)

Y

X =X02="1(2

Q | f‘
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Fuler-Bernoulli Beam

ANSYS




Symmetric Hyperbolic Systems

i1 -
~ Ixl constant
Ssymmetric

o

Boundary
Conditions: A(2)p(z,t) =0vze oQ;t >0
Theorem :

1) Symbol : A(&) = Zn: & Aisnonsingularvé #0e R"

2)A,+ A <0
3)dim N(A) < o

Sobolev
Norm
—

4) Boundary Conditions are Coercive (.- QH < H9H+HA9H)

= A has compact resolvent and A generates
an exponentia lly stable C, semigroup.




Examples

Wave Equation

Smart Grid: Interarea Oscillations
D X% =VEX, 1%




A y Direct Adaptive Model Following Control
(Wen-Balas 1989)

Reference
Model

Xm

Infinite
Dimensiona

(Un» Xy €,) Known Signals
Adaptive
Gain Laws




Direct Adaptive Persistent Disturbance Rejection
(Fuentes-Balas 2000)

Reference
model

Disturbance

Generator '

" Plant
S

5

(U X0 €y ?B ) Known Signals
Disturban& Basis

Adaptive
Gain Laws




Persistent Disturbance Example
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Adaptive Control Is Not Complicated !

Adaptive

Regulation

|nfinite - Dimensiona | Plant

%:quLBu
ot
y=Cx; X, € D(A) c X

Controller

Use ONLY
Outputs &

Know Almost

NOTHING
about the Plant




Stability via Lyapunov-
$= f(x)

x(0) = X, e R"

Find Energy - like Function :V (x)
V(X)>0whenx=0

V(0)=0

Nonlinear Dynami cs{




Infinite-Dimensional Lyapunov-Barbalat Theory: PDE & Systems

V(t,x,AG) =V(t, X) +%tr (AGy *AG")
<

(\with x(t) =U (t)x, € X;t =0

Linear or
v
a(H(X, AG)H) <V(t,x,AG) < ,B(H(X, AG)H)

V(t,x,AG) <-W(X) <0

dVV((;t((t)) _( W 62?) s bounded, then W (x(t)) ——=—>0 and AG bounded.

Theorem:; If {

and

—
Frechet
Derivarive

If W(X) is coercive in the partial state x ,orW(x) >y (|x|), then x(t) ———0.




Linear System Strict Dissipativity ( Balas-Frost)

_ V(X)= (X Px)>0;Vx=0
Energy Storage Function :
V(0)=0

A Linear Dynamic Infinite-Dimensional System 1s STRICTLY DISSIPATIVE when

LinearOp
Slf-Adjaint

P X —FEie  , X
Bl X” <V = (PX ) < Pl X 5 DISSIPATIVE when o=0

Re(PAX X) = %[(PAX X)+ (%, PAY] < —afq; ¥x € D(A)
W(X)

%,_/
External Internally

Energy Power Dissipated

Sorage
Rate Power




Strictly Dissipative (ASD) Systems
(A(X), B(x),C(x)) ASD means
3G, 5 (A (X) = A(x) + B(X)G.C(x), B(x),C(x)) Strictly Dissipative

L

Linear or Nonlinear

u=G.y+w

3 ela Almost Strictly DissipatiVe e—
System

G.y

G.

Strictly Dissipative System

Need not know
the value!




LINEAR ASD:
Two Simple Open-Loop Properties

Al
High Frequency Gain 1s Sign-Detfinite (CB > .

Open-Loop Transter Function is Minimum Pha
(all transmission zeros stable)

(=) | Almost Strictly Dissipativ

u=Gy
G —
produces x(t) ———0

with bounded adaptive gains G(t)

Adaptive Regulation {




An Infinite-Dimensional

Version
[ Ox

=" Ax+Bu = Ax+ ) bu;; Ageneratesa C, semigroup
i=1

X(0)=x,e D(A)c X
y=Cx=[(c,X) (c;,X) ... (c,x)];b.c;eD(A)

N

(My) Theorem: Def : 4, e Cisatransmission zero of (A, B,C) when N(H (4.)) = {0}
A-Al

B
where H(A) z{ ] D(A)xR" — XxR" closed linear operator
¢ 0 Pretty Close !!
(A, B,C)is Almost Strictly Dissipative

= CB=|(c,,B)] nonsingular and Zeros(A,B,C)= {2 IN(H (1)) #{0}} = 0 (A,,) "Stable’

(i.e. E satisfies spectrum determined growth condition)
28



Reference Model

Adaptive Model Tracking

in the Presence
of Disturbances

Up :9|—¢D
Oor N(O,R.)

= = €
X = AX+ Bu +Tu, y A’
y:Cx "

ap U
NV %

AX = X— X, m—)OOr N(O, R*)

Controller

.A‘ &G = [Ge Gu C:\'m GD]: _h(GY’um’ ym’¢D)
Can also be
Infinite

Dimensiona

1
(S %




Adaptive Control Law

U= SBuum + Gmwng +  Gpp, + GE

—_—

A4 . . .
Modé Tracking Disturban& Rejection  Stabilizaion

where

9

r e

G,=-€,U,-0,,0,>0

n=—€ -X:n-am;a >0Gain
GD——e ¢, 00, AdBptation

=—€, e .0.,,0,>0 Laws




Ideal Trajectories

X, = §1Xn + ol + SsZp = 2
U* — S;klxm + S:Zum + SEBZD — SZZ

AS +BS,=SA +H,
CS, =H,

Matching Conditions {

S El:ql S, qs] :D(A,) > D(A) c X with D('E}n) = D(A ) xR"xR"

and D(A ) densein X=X _xR™xR"e,

d le[O 0 —FH]
. {Hz [C, 0 0]

m




An Infinite Dimensional Internal Model Princig

Theorem : Assume
Is nonsingular and the open loop zeros [EIFM)] are (exponentially)

stable.
Then the zeros of the open loop plant must not overlap with the poles

of the tracked reference mode!:
a(A,)=0,(A)vo,(F)uo,(F)
< p(A,)={1eC/(Al —A,)™":l, =1, isabounded linear operator}

(or G(R‘ﬂ)ma(KZZ):¢ where G('K‘zz)E[P(z‘zz)]C)Q

There exist unique bounded linear operator solutl

satistying the Matching Conditions




Adaptive Control in
Quantum Information Systems

This might be the most fundamental
application of direct adaptive control

Erwin Schrodinger’s Cat (1935)

At “half-life of particle, cat is dead and alive!
“superposition”

v= [O)|&) +|O)E)

Ontology ( what is) vs Epistemology ( What is measureg




Quantum Computing

A Quantum computer will operate ditterently from a Classical o
It will be involved w physical systems on an atomic scale,
eg atoms, photons, trapped 1ons, or nuclear magnetic moments

3 Quantum Gate
—

Unitary :> Reversible

Entanglement produces Decoherence




Quantum Basics
(Dirac & Von Neumann)

bounded Orthonormal

Observable A: X —Xf-adoint Eigen —Basis for X

Compact Resolvent= Ax =Y 1, (X, ¢¢),
k=1 T

B X

Pure States : ¢, eigenfunctions of A

Mixed State ¢ € X complex Hilbert Space:

o o 2
(p.0) =10rp] =1= 9 = > cpp &1=[p]" =3 e
k=1 k=1

where \ck\z = probability of beingin the purestate ¢,




Quantum Measurementses

...for when you B '@ W SN et L Never
gaze long into § “W B o around when
the abyss. The §'¢/ g s M ' Zgu need
abyss gazes - o= M him
also into you.”

Action

bounded
Observable A: X —=9% 5 X Hilbert Heisenberg Uncertainty Princip

Mean (A)=Tr(pA)
where p is a state or density operator (p >0& Tr(p) =1)
Dispersion AAzTr(p(A—<A>)2) -

Heisenberg Uncertainty Principle : Simultaneous Measurement of A& B

(AA)?(AB)? > %\Tr (p[ A B])|; commutator [ A, B] = AB - BA




Schrodinger Wave Equation

@ € X complex Hilbert Space

722 - H, g+ Hc(u)g
ot —— ——
Self — Adjoint Disturbanc €

Compact Hamiltonia n
Resolvent

. Discrete Real Spectrum o (H,) = {/lk}le

Diffusion with
Imaginary Time:

t — itOLD
NEW — h

= U,(t): X > X Unitary Group (reversible)

andU ,(t)p = ieilkt <§0’¢k >¢k with <¢k y > =0y

Marginall
yStable




Small Quantum Systems

m We can begin to experiment with just one
electron, atom or small molecule

m Need:

¢ Precise control

%8

~ Isolation from the environment

Simple small systems : single particles or
small groups of particles

David Wineland NIST




Control of Individual Quantum
Systems: Quantum Feedback Loop

Physics Nobel Prize 2012
S. Haroche & D. Winelan

Purpose:

Use information from weak QIND measurements to prepare photon number
(Fock) states of a cavity field and

protect them against decoherence.

Method:

Quantum feedback realized by atoms as QIND probes and

small coherent field injections into the cavity mode as an

actuator.




Reference

Adaptive Quantum Model: Closed
: D¥sie
Model Tracking to Reduce N

Decoherence

Hye @+ H(U)o +Hha @
Sdf - Adjo int
Compact
Re solvent

QND Measurement

&Quantum Error

Adaptive Quantum Controller

éG:[Ge Gu Gm GD]:_h(eyvum!ym’¢D)




Famous
Lisbon Poet

“No intelligent 1dea can gain general

acceptance unless some stupidity 1s
mixed in with 1t”
Fernando Pessoa, The Book ot
Disquiet




