Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

Hermann Kaindl
Vienna University of Technology, ICT
Austria
kaindl@ict.tuwien.ac.at

Outline
- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion
Traditional UI development

- Based on toolkits employing widgets
- Widgets grouped according to their graphical appearance
- Highly-specialized designers and programmers needed
- Lots of UI code
- Error-prone, low maintainability
- Expensive

Widgets

- Interactive objects presented on the display
 - windows
 - buttons
 - scroll bars
- User interface elements
- Classification hierarchy of widgets

![Diagram of widget hierarchy]
Interaction design

- Design of interactions between human and computer
- Relation to requirements engineering
- Relation to task analysis
- No commitment to specific user interface

Scenarios – Stories and narratives

- For representation of
 - cultural heritage
 - explanations of events
 - everyday knowledge
- Human understanding in terms of specific situations
- Human verbal interactions by exchanging stories
Ontologies

- Tom Gruber
- Actually, the old Greeks
- Domain models
- Conceptualizations of a domain
- Often using taxonomies and object-based ideas
- Ontology languages based on knowledge-representation theories
- E.g., OWL based on description logic

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion
Speech acts

- John R. Searle
- Theory from philosophy of language
- Human speech also used to do something with intention — to act
- “Speaking a language is performing speech acts, act such as making statements, giving commands, asking questions and so on”
- **Speech acts**: basic units of language communication
- **Communicative acts**: abstraction from speech

Conversation Analysis

- Harvey Sacks; Luff, Gilbert and Frohlich
- Theory from sociology
- Focus on sequences of naturally-occurring talk “turns”
- To detect patterns that are specific to human oral communication
- **Adjacency pair**: e.g., a question should have a related answer
- **Inserted sequence**: subordinate interactions
Communicative Acts Taxonomy (selection)

- Agreement
- Confirmation

Rhetorical Structure Theory (RST)

- Mann and Thompson
- Linguistic theory
- Internal relationships among text portions and associated constraints and effects
- Relationships in a text are organized in a tree structure
- Rhetorical relations associated with non-leaf nodes, and text portions with leaf nodes
Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

© Hermann Kaindl

Institute of Computer Technology

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
 - Sketch of automated user-interface generation
 - Evaluation of Web GUIs
- Summary and conclusion

RST Taxonomy (selection)
Discourse Example

Discourse "atoms" and "molecules"

- Metaphorical view
 - Communicative acts as atoms
 - Adjacency pairs as molecules
- Communicative acts instead of RST text portions
 - Interaction instead of text
- Two dimensions
 - Tree with discourse relations (monologue)
 - Adjacency pair (dialogue)
- Integration of RST and procedural constructs with Conversation Analysis
Communicative Acts – Open & Closed Question

- Open Questions enable asking for a particular type of information, respectively, an instance of a domain class.
- Closed Questions restrict the possible answer to a list of provided domain instances to choose from.

Communicative Acts – Informing & Answer

- Both are used to convey information.
- Answer communicative acts are always directly related to questions, whereas Informing is uttered standalone or together with acknowledgment.
Communicative Acts – Request

Used to request the communication partner to act. Thus, the propositional content of a request is always an action that has to be carried out. The action can be defined either for the given application, or it can be the request to utter a particular communicative act.

Communicative Acts – Offer

Offers to carry out an action or to add information to the shared knowledge.
Communicative Acts – Accept & Reject

Accept and Reject provide for accepting or rejecting a particular request or offer.

Communicative Acts Taxonomy
Adjacency Pair

- Relates an initial communicative act with one subsequent communicative act or two alternative subsequent communicative acts.
- Typical adjacency pairs of communicative acts are:
 - ClosedQuestion–Answer, OpenQuestion–Answer
 - Offer–Accept, Offer–Reject
 - Request–Informing, Request–Accept, Request–Reject

RST relations (in our approach)

- **Nucleus**: the main part of the communication
- **Satellite**: the helper part
- Communicative acts instead of text portions
RST relation – Joint

Relates independent subtrees with communicative acts of the same kind. It does not imply any order. So, it is also possible to issue both nuclei concurrently (e.g., on a GUI).

RST relation – Alternative

Relates alternative subtrees with communicative acts. Only one subtree can be finished.
RST relation – Background

- General information of any sort that is likely to help understand the nucleus.
- Thus, satellite of the background relation shall only contain Informing communicative acts.

RST relation – Elaboration

- Satellite contains additional detail about some element of subject matter which is presented in the nucleus, in one or more of the ways listed below (nucleus :: satellite):
 - set :: member
 - abstraction :: instance
 - whole :: part
 - process :: step
 - object :: attribute
 - generalization :: specific

- The communicative acts can also be questions, for example, if one communicative partner wants to figure out additional details about the subject matter.
RST relation – Elaboration (cont.)

Specialization of Elaboration, restricting the additional detail of some element of subject matter to a short description, either title or caption.

RST relation – Title
Taxonomy of RST relations

Procedural construct – Sequence

Defined order of uttering the communicative acts or subtrees.
Procedural construct – IfUntil

- If-statement combined with a conditional loop
- Utterance of the <Then> subtree depends on successful execution of the related Condition.
- Repetition of the <Tree> branch until Condition becomes fulfilled, while RepeatCondition is fulfilled
Conceptual Discourse Metamodel

Domain representation

- Speech act usually talks about something in the domain of discourse
- Model of the domain
- Integration and use of ontologies
Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

Example model

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling

Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion
Exercises

- Given at the tutorial

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion
Integration and Use of Ontologies

- Speech act usually talks about something in the domain of discourse.
- Selection from ontology in Domain-of-Discourse Model
- References from Discourse Model to Domain-of-Discourse Model

Domain-of-discourse model

Model of domain of discourse for online shop example
Interface to Application Logic

- Specification of (interfaces of) methods of the application logic
- **Action-Notification Model**
 - Access or change of data (Domain-of-Discourse Model), and
 - Application-specific actions
 - Actions of software, or
 - Physical actions (of a robot)
- References from Discourse Model to Action-Notification Model

Rendering of Final User Interfaces

- Automated generation of final (multimodal) UIs
- Generation of GUIs (WIMP UIs)
 - Generation of Structural UI Model
 - Optimization (for Smartphones)
 - Generation of Behavioral UI Model
 - Weaving of Structural and Behavioral Models
- Even for multiple platforms

© Hermann Kaindl
Generation of Structural UI Model

- Model-driven transformations
- Two major steps to structure of Final GUI

Generation of Structural UI Model – MDA

- Model Driven Architecture
- Metamodels
- Transformation Rules
- Model transformation by rule application
Generation of Structural UI Model – Devices

- Generation according to device specifications
- Application-tailored device specifications in addition to physical ones

Optimization for Smartphones

- Objectives:
 - Maximum use of the available space
 - Minimum amount of navigation clicks, and
 - Minimum scrolling (except list widgets)
- Heuristic search for optimization (Branch & Bound)
Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

Generation of Behavioral UI Model

- UML state machines for each part defined
- Composition of state machines according to structure of Discourse Model
- Determination of Presentation Units (for GUI)
- Parallelism and Granularity of Communication Units

Weaving of Structural and Behavioral Models

- Different levels of abstraction
Examples of Final User Interfaces – Phones

- Simple flight-booking GUI
- Optimized for various Smartphones, see http://ontoucp.ict.tuwien.ac.at/UI/FlightBooking
- Potentially different UIs for different phones (screens)
Flight Booking Domain-of-Discourse Model

Flight Booking Rendered for iPod Touch
Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

© Hermann Kaindl

Institute of Computer Technology

Unified Communication Platform

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion
Introduction to Smartphone Study

- Tailoring for smartphones is important:
 - Relatively small screens
 - Touch-based devices
- What is better?
 - Vertical scrolling
 - Tab-based navigation (tapping)
- User study for investigation of this question

User Study Design — Participants

- 30 participants:

<table>
<thead>
<tr>
<th>Age:</th>
<th>18–39 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender:</td>
<td>3 female and 27 male</td>
</tr>
<tr>
<td>Educational level:</td>
<td>28 students and 2 assistants with doctoral degrees</td>
</tr>
<tr>
<td>Use of mobile devices:</td>
<td>56.7% regular, 40% sometimes but never owned one, 3.3% never</td>
</tr>
<tr>
<td>Online flight booking:</td>
<td>20% regular, 40% sometimes and 40% never</td>
</tr>
</tbody>
</table>
Informing the participants

Scenario description (printed version on the table):
“Imagine it is Tuesday 14/02/2012, 11:55am and your boss Mr. Huber tells you to book a flight ticket for his wife as quickly as possible. Mrs. Huber is already waiting at the airport!”

Book a flight from Munich to Atlanta on 02/14/2012 at 1pm for Mrs. Anna Huber (age 47). Pay for it using her husband’s (Max Huber’s) VISA Credit Card with the number: 1258 8569 7532 1569 (validation code: 354) and the expiration date 12/14.”

After both tasks (layouts) subjective opinions

Two different layouts:

a) Vertical scroll-based layout (Screen 1)
b) Both layouts (Screen 2)
c) Tab-based layout (Screen 3)
User Study Design — Analysis

- Correlations between task time / error rate and the type of layout

- **Independent variables:**
 - GUI: tab-based (T-UI), vertical scroll-based (V-UI)
 - The order in which the two layouts were tested

- **Dependent variables:**
 - Adjusted task completion time
 - Error rate

- **Point-biserial Pearson correlation coefficients**

User Study Design — Null Hypotheses

- **NH_{VT,T}:** There is no statistically significant correlation (p-value = 0.05) between the adjusted task time and the type of GUI: V-UI and T-UI.

- **NH_{VT,E}:** There is no statistically significant correlation (p-value = 0.05) between the error rate and the type of GUI: V-UI and T-UI.
Adjusted task time using V-UI is significantly smaller than using T-UI in Screen 1 and Screen 3.

The null hypothesis NHVT,T can be rejected for this experiment.

It took 54% longer to operate T-UI.

The error rate for V-UI is significantly smaller than that of T-UI in Screens 1 and 3.

The null hypothesis NHVT,E can also be rejected.

There were no errors for V-UI.
Results — Subjective Opinions

- Results of the *subjective questionnaire*:
 - 60% preferred V-UI
 - 30% preferred T-UI
 - V-UI was considered
 - More intuitive to navigate
 - More intuitive to interact with
 - Slightly less demanding
 - More efficient to use
 - *Interviews* confirmed error rate result.

Conclusion of Smartphone Study

- Participants performed significantly better when scrolling vertically, as opposed to tapping on widget elements (tabs).
- This preference was also reflected in their subjective opinions.
- The study also suggests that minimizing the number of taps is important on a smartphone.
- Study variable-sized lists, since it is not clear if vertical lists of *any* length are necessarily better than a tab-based layout.
Introduction to Smartphone & Tablet PC Study

- Tailoring for smartphones and tablet PCs is important:
 - Relatively small screens
 - Touch-based devices
- What is better?
 - Horizontal scrolling
 - Tab-based navigation (tapping)
- User study for investigation of this question

User Study Design — Participants

- 20 participants:
 - Age: 21—35 years
 - Gender: 1 female and 19 male
 - Educational level: Students
 - Use of mobile devices: 75% regular, 25% sometimes but never owned one
 - Online flight booking: 20% regular, 35% sometimes, 45% never
In forming the participants

Scenario description (printed version on the table):
“Imagine it is Tuesday 14/02/2012, 11:55am and your boss Mr. Huber tells you to book a flight ticket for his wife as quickly as possible. Mrs. Huber is already waiting at the airport!”

Book a flight from Munich to Atlanta on 02/14/2012 at 1pm for Mrs. Anna Huber (age 47). Pay for it using her husband’s (Max Huber’s) VISA Credit Card with the number: 1258 8569 7532 1569 (validation code: 354) and the expiration date 12/14.”

After both tasks (layouts) subjective opinions

Tab-based layout:
User Study Design — Two different layouts

- **Horizontal scroll-based layout:**

 ![Screen 1](image1.png) ![Screen 3](image2.png)

User Study Design — Analysis

- Correlations between task time / error rate and the type of layout
 - **Independent variables:**
 - GUI: tab-based (T-UI), horizontal scroll-based (H-UI)
 - The order in which the two layouts were tested
 - **Dependent variables:**
 - Adjusted task completion time
 - Error rate
 - **Point-biserial Pearson correlation coefficients**
User Study Design — Null Hypotheses

- $NH_{TH,T}$: There is no statistically significant correlation (p-value = 0.05) between the adjusted task time and the type of GUI: T-UI and H-UI.
- $NH_{TH,E}$: There is no statistically significant correlation (p-value = 0.05) between the error rate and the type of GUI: T-UI and H-UI.

Results — Statistical Results

- Adjusted task time using T-UI is significantly smaller / larger than using H-UI in Screen 1 and Screen 3.
- The null hypothesis $NH_{TH,T}$ can be rejected for this experiment on both devices.
- Task times on the tablet PC were on average smaller than on the iPodTouch.
The error rate for T-UI is significantly smaller than for H-UI for Screen 1.

The null hypothesis $N_{TH,E}$ can be rejected for the experiment on the iPodTouch and Screen 1 only.

There were no errors for H-UI.

Results —
Statistical Results (cont.)

Results from the subjective questionnaires

For the smartphone:
90% of the users preferred T-UI overall. In their opinion:
- It lent itself more to how they like to work.
- It was clearer to use.
- It was more visually attractive.
- It was more efficient to use.

For the tablet:
90% of the users preferred H-UI overall, and also on each category besides visual attractiveness.
Conclusion of Smartphone & Tablet PC Study

- Further evidence that it is important to tailor GUIs to fit the size of the screen.
- A GUI tailored for a smaller screen may lead to efficiency loss on a larger screen due to additional tapping on tabs for splitting unnecessary for the larger screen.
- Size matters in terms of efficiency of use.

Discussion of Generality

- Prototypical and simplified flight booking application
- GUIs HTML-based
- Only two distinct screen sizes used
Automatic Generation of Web Interfaces from Discourse Models and Their Evaluation

Outline

- Background
- Theories underpinning discourse modeling for HCI
- Interaction design based on discourse modeling
- Exercises
- Sketch of automated user-interface generation
- Evaluation of Web GUIs
- Summary and conclusion

Summary and Conclusion

- Interaction design can be based on discourse modeling.
- These discourse models can also be used for generating GUIs.
- The GUIs can be automatically tailored according to evaluated optimization criteria.
Thank you for your attention!

Literature

Selected work of this tutorial presenter

Selected work of this tutorial presenter (cont.)

