_ CNRS Institut TELECOM

EIGNS s @ movar

Network Protocol Testing:

Formal, Active and Passivel

'|J|r|IL!-’l: FriTioad teals
'-J'r.lh i ELmé
X 'al‘\n e o
dliatian nu? H‘-Il I:
o *:ﬂ.stem E

Sion . DTOCESS s
Stephane Maag mﬂ”ﬁuw&wnﬁd :

lester

ADVCOMP 2014
August 24 - 28, 2014 - Rome, Italy

Introduction

B What is TESTING ??!
e Tt is Not:

''ve searched hard for defects in this program, found a lot of them and repaired them. |
can’t find any more, so I’'m confident there aren’t any. “ (Hamlet, 1994)

e Ttis:

“A process of analyzing an item to detect the differences between existing and required
conditions, and to evaluate the features of the item.” (ANSI/IEEE Standard 1059)

m To summarize (briefly!):
* Meefts the requirements,
* Works as expected,
* Isimplemented with the same characteristics.
> Many stages or phases are needed ...

EYPRT R |

Test Phase

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

What we want to Test??

ITU, ITU-T (ITU-T
X.224,...)

ISO (ISO 7498,...) i :
|EEE (IEEE 802.11,...) T E—

® Our targets: L ETS (50N, STt

IETF (routing

oooooooooooooooooo

protocol ,...)

* Protocols i Bl L i)

= —

* Network devices (and its embedded i'cjd.rhni:onén’rs)
* Communicating systems (clouds, WS, IMS based,...)
* Information Systems e "¢ Iy

* Etc.

* But, in our presentation: not the Software or programs!

g
)
=> we focus on black box testing. o
s

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy '55

Why to test??

specify

Conforms to

.
-k
&)
@*

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

From the ldeas to the System

specify

Conforms to }

:,
-k
&
")

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Why to test??

m Depending on "What" and "When" we test, the reasons for testing are numerous!

m This could be for:

Checking the design

Bug tracking
Conformance

"Security”
Interoperability
Performance

Reporting

Trust, confidence

.. thousands of reasons ...
Making money?

[Requirement Stage |

L[Test Praming |
L[Tost Analysis |
L,

Test Design

4%
|Regressiun Testing| ||='.>| Test Verification & Construction |

LD! Test Execution I

Result analysis
|—b Bug Tracking

Reporting & Rewurk|

Final Testing & Implemenlaliun|

Post-implementation|

How to test??

m Depending on "What", "Why" and "When" we test,
hundreds of techniques are today used! (Hierons et al 2009

m In our presentation, we introduce formal ways of
testing network protocols through active and
passive methods for functional requirements.

* Formal description of the protocol requirements.

oM

* Active testing architectures.

Manual Testing

Emulators

Automated Testing
on Device

* Passive testing by formal monitoring =

nnnnnnnnnnn

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

“Formal”, 1.e.??

Did you already test your owns?!
1. You develop your system,
2. You check some well chosen functionalities,

3. If all pass, you then decide it is tested.
=>» Ancestral way !

=>» MC Gaudel, Testing Can Be Formal, Too

Proceedings of the 6th International Joint Conference
CAAP/FASE on Theory and Practice of Sof‘rware Development,
Pages 82-96, Springer-Verlag, 1995 ACM DL DIGITAL

_ Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

SudParis
(5.4 Fiid |

“Formal”, 1.e.??

m Indeed, with current complex systems, "manual”
testing is not “"efficient” N

m Automate the Testing process

becomes crucial.
* Designing the protocol in a "smart” way
* Designing the Ideas in a "clear” way

* Defining Testing architectures

* Test suites generation/execution

* Testing verdicts generation

* Diagnosis, reactions, o oY iR

_ Stephane Maag / TSP

ADVCOMP 2014, August 24 - s

“Formal”, 1.e.??

m The Ideas of a system is denoted in Reguirements.

m To give the requirements of a system, metrics are not
enough, further documents are needed.

Plain Text Metrics

The component

must be very usable, Failure Rate < 2/h ?yPressed
and always return bar

when given a foo.

Requirements

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

ui TELECOM

Instid

E
;\l‘
g¢
®
7)]

ldeas and System - Revisited

P
<

Conforms to ConfE;rms toConforms to

formally

:,
-k
&
")

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Terminology

m Error means that a human being writes code which
has a Fault.

m A Fault is a piece of code which, when being
executed, may lead to a Failure.

m Failure is an observable behavior of a system which
does not conform to a requirement.

m Testing means running a system with the ability to
detect failures.

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

To improve the quality

E V-Model, XP, Agile ...
Pror 4 towm, six Sigma, ...
CMM, SPICE, ...

Static/Dynamic analysis

Fault {1SW testing
Reviews, reporting,...

Organize, assess and improve the development process:

Organize, assess and improve the testing process:

Failureq ceriiied Tester, TMM, TPI, CTP, STEP....

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

nstitut TELECOM

S pmovar

Models

Requirements

m Formal Description Techniques
* Based on mathematical concepts, graph theory, logics or algebra.
* To specify the functional properties (qualitiative) of a system

according fo its environment. E

* Are conceived to describe composed distributed systems. 3
-F

* Many semantics: state machines, LTS, temporal logic, process (3)

algebra (CCS), Peftri nefs, ...
* Many languages: SDL, VHDL, Lotos, CASL, B, Z,LTL, .. UML, SysML?

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

[1®

TELECOM
SudParis

m
i
= |

Advantages of these FDT

Standardized and stable definitions (international consensus),
No ambiguities

Precise =1
fn=p3V [ﬂ!ﬂ.E-I’hz B

s=pv [ﬂhﬂxr?)

3

Scalable, application to complex realtime systems, . = ———0p

Controlled evolution,

Important user community,

Reduce the development cost:

* Fast error fixing - to react asap!

m Abstraction:

* Implementation independent
0 FDT # programming language

15 Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Who are using FDTs?

m Industrials:

* To improve the quality, reliability, reusability, ...

0 The Majors but not only! Airbus, Orange, CISCO, Google, IBM,
Daimler, ...

m Universities and research centers

* Communicating distributed systems,

* QoS, QoE, QoBiz
* To make them evolve to target MANET, VANET, IoT, ..

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

FDT for Testing

1

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

m Test : multiple interpretations

* Inspection/review/analysis

* Debugging

* Conformance testing

* Interoperability testing
* Performance testing

e Etc.. etc..etfc..

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

© saomovar

Various phases of testing

m Unit testing: m Conformance testing
* Process to ensure the smooth functioning * Method to compare the performance of a
of a protocol module. real system with its formal model.
[] Integr\ation fesfing H In'l'er'oper'abili'l'y Tes'ﬁng

* Process to ensure that a protoco/
interacts’ properly 'with another protocol

(which may also be the same NN'/ NM).

* Method to integrate multiple modules
previously tested by ensuring that
everything is good operation.

m And many others

(0} Functionali . C i
\D ”snucit;%rillgy"y 0 \DMaigf[ag'ﬁgfmy i
Accurac C abili g
Interoperd)yi'lity Reliability Analysability o E
Compliance Maturity Changeability %
Securty | | | Recoverability Testability 2"
g Fault Tolerance Uy Eé
C) N (_C . @ @)
D usability ; @ [ermny
Learnability N Installability [ISO 9126] gives a ta
Understandability Scicriey Replaceability | of quality attributes. w
Operability Time Behavior Adaptability
Ste Resource Behavior J
Y = i

Conformance testing — MBT

m Remind: in here, we focus on functional testing (# non-functional)
for protocols, black box testing (# white/grey box), i.e. Model-
based testing.

m MBT means testing with the ability to detect failures which are
non-conformities fo a Model.

Model specifies

w conforms to | OYStem
A —

m MBT can also include:

ui TELECOM

* automatic generation of test cases from the model -k

* automatic execution of these test cases at the system (testing arch.) é

* automatic evaluation of the observed behavior, leading o a verdict @S
@

(PASS FAIL, INC,..)

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Two main techniques

I PASS, FAIL, INC.

Formal Test
Specification Suites

Pros vs cons :
© Able to target a specific piece of the specification

® Automatic generation of the tests (complexity)
® May degrade (crash) the IUT functions

1 Verdicts:
- PASS,FAIL,
INC, and others!

Tr Passive Tester
PO ace

| V Collection

| System User |

.« TELECOM

Requirements/properties

Pros vs cons : .,
© No interferences with the TUT n

© No test cases generation @
® Algorithms efficiency (complexity)

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Active Testing

" Model

Test Generation

@ conforms to
-

specifies
>

— T
~—

Test Suite

— | Test Execution

C Verdict)

\

I 0.
%

System

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Soundness of Conformance Testing

"~ Model specifies 4
@ conforn;to Sy
-
Test Generation Test S — | Test Execution

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Completness of Conformance Testing

"~ Model specifies 4
@ conforn;to Sy
-
=
Test Generation Test S — | Test Execution

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Soundness and Completness

("
\ : /\

m A test system, which always says / is sound.

/

m A test system, which always says ‘\L,/P/ is complete.
~d

m We want test systems that are sound and complete!

m But ... someone told ...

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Soundness and Completness

m" Te.s'f/'ﬂ% can never be sound and complete”, dixit Dijkstra ... of
course, he is right (of coursel).

m He refers to the fact, that the number of test cases in a sound
and complete test suite is usually infinite (or at least too big).

m If that would not be the case, testing could prove the conformity
of the system to the model (given some assumptions on the
system).

m In practice, conformity is usually only semi-decidable by finding a
failure with a (sound) fest system.

m But still: completeness is a crucial property of a sound test
system stating that it can potentially find all failures!

=> theoretically possible, but most of the time impossible in
practicel

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

.
-k
&)
@*

An all-inclusive definition of Active Testing

m Protocol testing consists in:

. of its behavior...

* .. According to a set of test cases ...

* .. Aptly from an input domain (in practice
infinite) ...

* ... This compared to the expected behavior.

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Automatic test cases generation

m For many years, several generation techniques!
[Maag2010]

* W, Wp, HST, UIOv, DS, H, ..
* Many tools: TGV, Conformiq, JST, SmartTester, ...
* What about the coverage test criteria?

* Qutputs are test cases that are most of the time
abstract = need to be concretized.

* One common notation: TTCN3
(+ETSI TDL)

Test Generation

Stephane Maag / TSP ADVCOMP 2014, Aug

Coverage test criteria

m Coverage is a measure of

m Coverage of 100% "complete test" but
only the completeness regarding the selected
strategy.

m Omany strategies and coverage meftrics.

m No "best" but some better than others as
appropriate.

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

EX.. Branch coverage criteria

m Requires that each branch of implementation is
performed by at least one test case.

m A test suite T satisfies the for the

implementation I iff for every branch Bof I, C a
test case in T that causes the execution of B.

m NB: the branch coverage is not guaranteed by the
states coverage.

m NB: branch coverage mandatory in the unit test.

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Test cases concretization

m Objective: Relate the abstract values of the model to
concrete values of the implementation.

m Synthesized test cases describe sequences of actions that
have an interpretation at the abstract level of
specification.

® To run these tests on the implementation, we must
implement these tests in terms of implementation through
the interface I/0 system.

* Then test cases execution through a well chose testing
architecture!

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

specifies

Test suites execution 7

Test Generation Test Suite
(

m Objective: To force the TUT to perform the
specific sequence of events (test case) that
has been selected.

Test Execution

® Two requirements:

* Put the system into a state from which the specified
tests can be run (pre-condition),

* Reproduce the desired sequence (known as the Replay
problem)
0 tough issue, especially in the presence of concurrent
processes, unreachable process, non-determinism (i.e. same

input, different outputs!) and unstable context (wireless,
mobile environment).

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Testing architectures

m Testing architectures defined by the

ISO 9646

m Conceptually:

* The tester is directly connected to the IUT and
controls its behavior.

* As presented here: only used when the test
are performed locally by the human tester:
optimal to detect failures!

* But not directly useable for conformance
testing since the communication between the
upper and lower testers has to be done
through the “environment” (lower layers).

Tester

PCO
(N-1) ASP or N-PDU

L ower Tester

Testing architectures

m ISO 9646 describes four main architectures:
* Locadl
0 Upper and lower testers are into the SUT.
0 The upper tester is directly controlled by the tester and its interface
with the IUT is a PCO.
* Distributed
0 The upper tester is into the SUT.
0 Itisdirectly controlled by the tester and its interface with the IUT
is a PCO.
* Coordonnated
0 The upper tester is into the SUT but is implemented by the human
tester.
0 Itis directly controlled by the tester and its interface with the TUT
is not directly observable.
* Remote
0 No Upper Tester

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

. % s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

TELECOM
SudParis

m
i
= |

Testing architectures

System Under Test (SUT) Test System (TS)
System Under Test (SUT) Test System (TS)
PCO
ASPs I
- Upper Tester Upper Tester Test Co-ordination
Procedures (TCP)
Frocednes (1R} ASPs Lower Tester
PCO
PDUs
101 N e R Lower Tester UT oo PDUs_______ -
ASPs
T ASPs
PCO pCO
Lower level service provider Lower level service provider
Local Coordinate

IUT: Implementation under Test
PCO: Point of Control and Observation
ASP: Abstract Service Primitive

PDU: Protocol Data Units

Bystem Under Test (SUT)
Test System (TS) o , s Test System (TS)

System Under Test (SUT) Upper Tester§<————]]

TM-PDU ; ' Lower Tester
Upper Teste
Lower Tester uT N 7
IUT T TR -] PDU
PDU

ASPs ASPs

PCO
| Lower level service provider

PCO
| Lower level service provider

Controllability in the local architecture

m TInareal system, the upper layer, here illustrated as the Upper Tester,
communicates directly with the TUT.

m To be efficient, the communication between the IUT and the UT must be synchrone,
both entities should work as they would be directly connected.

* The yellow area in the figure represents this synchronization
m That's why we commonly use this local architecture to test the devices.
* Thus SUT, TS, PCO will be physical elements (devices)

m Inorder to fest programs or software, it is then commonly used to apply
asynchronous architectures, as it follows.

System Under Test (SUT) Test System (TS)
PCO ASPs
@~ » Upper Tester
Test Co-ordinatipn
Procedures (TCP)
PDUs
IUT [- r--- Lower Tester
T T ASPs
v
PCO

Lower level service provider ' ust 24 - 28, 2014 - Roma, ltaly

Distributed architecture

m The Upper Tester is implemented by the human testers,
m The TCP can be manual (by an operator) or automatized,

m The coordination between the UT and LT is a protocol developed by
the human testers,

m The test suites are the same as in a local architecture

m Appropriated to test a complete protocol stack layer.

System Under Test (SUT) Test System (TS)
Test Co-ordination
Upper Tester [«

PP Procedures (TCP)

ASPsI Lower Tester

PO
eoooodeo.PDUs_______)
\uT ASPs

PCO

_ Lower level service provider 114 - Roma, Italy

Exemple

m To test a phone switch:

* The UT could simulate the user (directly connected)
* TheLT could

Q

Q

Q

simulate the remote switch
could give instructions to the UT (e.g., pick up the phone)

and controls the answer on the PCO with which it is directly
connected.

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Coordinated architecture

m This architecture has as a main drawback that the IUT has to integrate a UT directly controlled by the
tester.

The Upper Tester is directly and normally connected to the IUT, developed by the developer of the IUT.
m No PCO on the SUT sidel

It communicates with the tester by a Test Management Protocol that exchange some TM-PDUs
* The Test Management Protocol must be normalized since the tester could be any kind of entity
The coordination between LT and UT (TM-PDUs) has to make part of the test suites.

m The messages detailing this coordination could be:

* either included in the data parts of the N-PDU (then pass through the LLSP)
* or transmitted through a separated connexion.

m Appropriated to test a intermediary layer.

Test System (TS)
Pystem Under Test (SUT)

TM-PDU

A
A

Upper Teste

Lower Tester
IuT R T -

ASPs

PCO
Lower level service provider

_ ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

_ Lower level service provider T

Remote architecture

The UT is not necessary, this can be operated by following /informal instructions.

The LT can send PDUs that contain data that will be interpreted by the IUT as primitives
to be applied to its upper interface (dotted line).

The possibilities to detect failures are limited since it is not possible to control or
observe directly the upper interface.

However, this architecture is simple and easy developed.

* Appropriated to test protocols whose the role of the upper interface of the SUT is limited (e.g.,
FTP)

System Under Test (SUT) Test System (TS)

\Upper Testefr——T—————————— g

Lower Tester

Link Upper Tester / Test System

m All architectures (except the Remote architecture)
plan a link between the UT and TS.

m This link is real and must be implemented
separately from the LLSP.

m Possibilities:
* An independent and reliable implemented link?

* Two persons communicating through another medium?

MANET - What's that ?

“An mobile ad hoc network is a collection of wireless mobile hosts
forming a temporary network without the aid of any established

infrastructure or centralized adm/hlisrraﬁan", Johnson et al., 1994
B —

* Infrastructure-less,
* Autonomous,

* The nodes behaves like routers,

* Multi-hops paths
* Dynamic topology (due to mobility or sleep mode),

Institut TELECOM

* Energy constraints due to batteries,

* Heterogeneous radio communications (uni/bi-directional links, different interfaces),

CNRS

- -novar

L

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

DSR (Dynamic Source Routing) — RFC4728

m Reactive protocol

* Unicast reactive routing protocol,

* No routing table but Source Routing, O

* Two mechanisms: Route Discovery and Route
Maintenance.

m Our DSR implementation:

* DSR-UU-0.2 runs in the Linux kernel originally
created at Uppsala University

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 2

DSR formal specification

m DSR formal model designed in SDL (Specification and
Description Language - ITU-T Z.100).

* EFSM based, allows to specify the system architecture,
the functional behaviors.

m Selection of the test purposes: from the DSR
standard,

m Test sequences generation: from the specification
and testing tools (TestGen-SDL).

% s@ !\'l“]s.oxﬂt!f:ilﬂ(‘ﬂ)l

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

DSR formal specification

System DSR node

|I I o e - .—J.—\.l

dat
Block NODE 1
Det infol | [de acd]
SYNONYM OVWh_ADDRESS integer=NODE _1_ADDRESS
det_info
US R NODEJd&?&_pac#&?] dst chal [dats packed]
data_cha y data cha
[Eonlean_paclef] | p | P
Maintenance ch 1 . e e—

aits . mainte lp_cha

hiaint_chi D
[Drrlife ind] EEd 13 whose 6 block types

56 whose 3 process types
[Boolean packet] 7.
[l pachet] 42

BT R AT [NRY ([N SRl (Y] = |

‘ Signals
I — EDVCONR R R R

DSR-UU Testing

m Testing assumptions:

* The system could be tested, TP
* Destination node exists,

* Source-destination path connected,

* Stable routes (to execute the tests),
* Test scenarios may be replayed.

m TCP = Tester Coordination Procedure
* asan Oracle developed in C.

®m UML = User Mode Linux for NS-2 Emulator

with its own DSR implementation
m Fedora Core 4.2.6.16 with virtual wireless network interfaces
m DSR-UU = TUT (Implementation Under Test)

m 22 GOAL test purposes — test seq. generation TESTGEN-SDL

»| RESULTS with [BO test objectives
* No FAIL verdicts - =5% of PASS verdicts
o = 95% INCONCLUSIVE verdicts

* Too many packets loss, interferences, uncontrollability of the emulator (# specification), so many topological

changes from the emulator !

Upper Tester Upper Tester
TCF/UDP TCP/UDP
IP/DSR IP/DSR TCP
Etrernet Ethernet
Lower Tester Lower Tester
Connect to TAPj Connect to TAFL
:‘i' -
NS2 emulation
Host 0S
|
2w B
= w
—E
@

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

DSR-UU Testing

B Main reason: unpredictable topological changes.

* The formal model did not plan such changes, then not
expected in the test sequences.

m Our solution : the Nodes' Self-Similarity
approach.

.
-k
&)
@*

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Nodes’ self-similarity

m Nodes Self-Similarity (NSS) definition

« Upon the formal model, composition of nodes that are
functionally similar from the IUT view point.

p

N = N; {N}ge IOEFSM.
O(N) = Uige O(N)

Tr (ActHideg (N;CIN,)) O Tr(N,) ¢ = {1-hop exchanged messages betweer\ihe

=4

I(N) = Ui I(N)) - Uig O(Ny) | N;UN, andN; are self-similar
S(N) = [Mice S(N)
X (N) = Mice X(N) \

Objectives: To represent p real interconnected mobile nodes
by ¢ nodes formally modeled with ¢ < p.

.
-k
&)
@*

* Reduction of the combinatory explosion
* Reduction of inconclusive verdicts (minimal topology)

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Nodes’ self-similarity

m Circumstantial NSS: s
* Applied on the model
* From the IUT view point ;

* For a specific test objective

m Exceptions

R D ®| ®

Ng
No —
{Ngc o Nyy1 where N, € {Ng} U {N:}

‘."Nl -------------------- ’NZ\\ /-N’3 ------------------ D
—— 0 ---0 O - - - O

s@ !\'llllhroxﬂt!f:,l.lﬂ(‘ﬂﬂ

where Ny is the neutral element.

@

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Nodes’ self-similarity

m NSS applied to our DSR specification.

* Three distinguished DSR elements: Source,
Destination, other nodes N (routers)

* By self similarity and according to test objectives plus
the RFC: reduction of the model.

0 Two hops paths needed S-N-D
0 Two routes needed

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

NSS for Conformance testing

m Test Execution
* In Spec: 2 routes from Sto D with 4 nodes
* In IUT. nroutes from Sto Dwith p nodes

— TCP manager algorithm to allow the TCP to match similar
routes from Spec with IUT (0O(n?))

m Experimental results on DSRUU and the same test suite

* No FAIL verdicts - = 95% of PASS verdicts
e = 5% INCONCLUSIVE verdicts

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Open issues In active testing ?

m What to do when:

* Access to the interface unavailable
* Unreachable component - UT/LT not allowed to be integrated
* SUT cannot be interrupted

e SUT cannot be stimulated ‘/’
m When stop testing? |

m What test cases selected?
= How to manage the incompleteness of the practice test?

1. To accept and find such as coverage criteria, time
constraints, randomness, test objectives, et¢. s
>
2. Askother leading to the completeness practice. a
Sy

")

> Let's try Passive Testing ...

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Passive Testing

m Objectives: collecting some protocol execution traces in
order to analyze if some expected standardized
properties are observed (PASS) or not (FAIL, INC, ..).

I

1 Verdicts: :
';—1___':—\ T NN a———— PASS,FAIL,
PC racf INC, and others!

| V Collection "

| System User I

Requirements/properties

m As mentioned before, Omany drawbacks but also many
advantages!

ui TELECOM

Instid

* Complementary to active testing,

S pmovar

* Very close to runtime monitoring and runtime verification.

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Passive Testing

m During several years, passive testing was based on
checking only the control parts of the protocol!

* Of course this is ho more possiblel

'?,“
Request ._*%_‘?: |
| A _'}\;
~
—_— "
Ack
USER : B

System trace: * Request, *, Request, Ack, *, ...

() ONLY CONTROL PART
[nvariant . Red / Ack

Request(from: aron@ti.com,
to: ben@info.com)

e

Ack(from: aron@ti.com,
to: ben@info.com)

USER : B

System trace : * Request(from: aron@ti.com, to: ben@info.com), *,
Request(from: aron@ti.com, to: cari@pouf.com), Ack(from: cari@pouf.com, to:
ben@info.com), *, ...

(i) CONTROL + DATA PART
lnvariant ;. Red(A) / Ack(B)

Verdict = True

Verdict = False or Inconclusive

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Passive Testing

® Main issues: the huge amount of data packets,
important payload and runtime monitoring
algorithms (complexity!) fo match observed traces
+ expected properties and to provide test verdicts!

m Challenge: While the control part still plays an
important role, data is essential for the execution
flow: how to formalize the data relations between
multiple packets (data causality)?

Requirements UT

(1) Formalization

(3) Capturing

(4) Transfer

Formalized
Properties

Related works

(2) Setup———»| Tester

(5) Evaluation

m Runtime verification for LTL and TLTL (saver2o11]

m A Formal Data-Centric Approach for Passive Testing of
Communication Protocols. [Laannes&Maag2013]

m Formal passive testing of timed systems: theory and t0ols (andres2012]
® Model-based performance testing (sarna2011]

m The design and implementation of a domain-specific language for
network performance testing [pakin2007]

m Diperf: An automated distributed performance testing framework
[Dumitrescu2004]

m A passive testing approach based on invariants: application to the
W AP [Bayse2005]

The DataMon approach imesmageors

Basics:

Data | = Atomic : A set of numeric or string values

= Compound : The set of pairs {(li,v;) | : € LAv; € D; U{e},i = 1..n}
where L = {l;.... 1.} is a predefined set of labels and Di
are data domains. A

[|
m = {(method, ‘INVITE"), (time, *644.294133000’),

?

Example: (status, €), (from, ‘alice@a.org’), (to. ‘bob@b.org”),
(eseq, {(nwm,T), (method, ‘INVITE")})}

The DataMon approach

Horn clause: Horn clause is a clause with at most one
positive.

Logician Alfred Horn , who first pointed out their significance in 1951,
"On sentences which are true of direct unions of alge bras"
Journal of Symbolic Logic, 16, 14-21

Disjunction form pV-QV..VAatvu

Implication form : U—PAJgA..AL
assume that u holds if p and g and ... and t all hold

The DataMon approach

= Term term == c | z | z.l.l... Where c is a constant, x is a variable,
| represents a label
k
= Atom A = p(term, ..., term)
| term = term Where p(term, ..., term)

| term £ term
| term < term
| term + term = term

Is a predicate of label p and arity K.

» Formula ¢:==A41A . AA,|¢— ¢ |0 |0 Where Ay. ..., A, are atoms
| vy{rqﬁ | Ezqf’ | Ely}.z‘i} | ay{;rﬁf)

The DataMon approach

Protocol properties are defined as Horne based
formulas.

Atom A...A Atom A Atom - Atom A ... A Atom

term = term term = term term = term term = term term = term

term < term term < term term < term term < term term < term

term > term term > term term > term term > term term > term
Control Data Clause Control Data

Request (x) A x.method !=“ACK” — Respond (y) A y.code =*“200”

Formula:
[, (request (x) A x.method !="“ACK” — 3., (nonprovisional (y) A Respond (y,x)))

The DataMon approach

192.168.1.5 192.168.1.4 5IP 321 status: 180 Ringing

192.168.1.5 192.168.1.4 SIP 319 status: 403 Error

192.168.1.8 192.168.1.5 SIP/SDF 530 Request: INVITE sip:ua2@CA.cym.com, with session description
Trace 192.168.1.5 192.168.1. 8 sIP 325 status: 180 Ringing

. 192.168.1.5 192.168.1. 8 SIP 323 status: 403 Error

192.168.1.4 192.168.1.5 SIP/SDF 526 Request: INVITE sip:ua2@CA.cym.com, with session description

192.168.1.5 192.168.1.4 sIP 321 status: 180 Ringing

192.168.1.5 192.168.1.4 SIP 320 status: 100 Trying

192.168.1.5 192.168.1.4 SIP/SDF 478 status: 200 ok, with session description

Algorithm:

<=

Algorithm 1: SLD resolution algorithm

ms remaining for evaluation. Substitution # with

» Pass: The requirement is satisfied

= Fail: The requirement is not satisfied & |y
= |nconclusive: Uncertain verdict =T

pop({B1,.... Bq}. S);
ens
else
| solved + sldSolve(S, a);

end

n
12
1
1
15
18 end
1 push(A, S);
18 return solved;
18 | end
0 end

21 useSolution(d);

Formalized requirement: g
O,(request (x) A x.method !=“ACK” — 3., (nonprovisional (y) A Respond (y,x)))

The DataMon approach

Tool Datamon EAGLE PASTE MOP
Time Complexity | n*tmeztm) {1y p292106%p | kn? +n.(p — k) L
Memory Complexity nlog(n) n.p*2Plog(p) n *
States unneeded v X v X
Temporal logic X v X v
Invariant v X v v
Condition v X X v
Actions to IUT X X X v
Data constraints v v X X

m: # right formula quantifiers
k, l,: # left formula quantifiers
n: trace length

p: # clauses

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

Real Experiments with Passive Testing

m 2 industrial case studies:

* Into a real MANET through a Asian ICT project
(MAMI): to test the routing protocol OLSR [IETF RFC
3626].

* Ona real IMS platform (hosted by Alcatel-Lucent) to
test the Session Initiation Protocol SIP [IETF RFcC 3261
(+RFC 3265)].

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

OLSR (Optimized Link State Routing) — RFC3626

m Proactive protocol

* Control packets are periodically broadcasted
through the network,

=> The routing tables are continuously updated

m MPR - Multi Point Relays
* Limit the flooding into the network
* Routes are optimal

* Routes are always available

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 2 bl

Why Passive Testing In this OLSR case?

m Active testing approaches were applied,

m Interesting verdict results on functional properties
have been provided.

m But due to dynamicity, mobility and topological changes
— many inconclusive verdicts obtained (>60% of all
obtained verdicts)!

> Passive testing approach to bypass that main issue

% s@ !\'llllhroxﬂt!f:ilﬂ(‘ﬂﬂ

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

The OLSR testbed

® 4 real OLSR nodes + an NS2 emulated wireless testbed:
* Real nodes:
0 3 laptops with 802.11 a/b/qg
0 1laptop with a wireless adapter WPN111
0 OLSR implementation: olsrd-0.6.3

* NSZe:

0 A simulator: it manages the nodes’ mobility and wireless
communication in their simulated environment. Virtual machines _
are connected to the simulation through an emulation extension —— J
(UML), ;’ Node 1

0 A host (or focal) machine: this machine hosts the simulator and ! \
the nodes emulated through virtual machines, 4 l _

0 Virtual machines (VMs). But real machines can also b%w \\ ‘;' Node2
additional nodes. J

m Traces captured by wireshark in eth0 S

0 XML format + XSL style sheets to filter and ’ 5 @ @ @

format the information TCPIUDP

IP/OLSR

ETHERNET

_ Stephane Maag / TSP ADVCOMP 2014,

Datamon

Trace Message format Clause
(raw) (from protocol) B Property
K ¢

Trace processing

¥

Property evaluation

Institut TELECOM

S pmovar

Results

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

[1®

TELECOM
SudParis

m
i
= |

Four functional OLSR properties

m Property 1: This property expresses that if a
message (/msgq) is received announcing an
asalmme‘rr'ica link with the node of address
'10.0.0.2', then at a previous point in the trace
&‘6— msg), a message must have been sent by the

broadcasting its own address.
Vimsg(asym_bcast_recv(‘10.0.0.2°, msg, addr) —

Ip_msgemsginitial_bcast(*10.0.0.2", p_msg))

The initial broadcast is defined by the clause:

initial_beast(local_addr, message) —
message.message_type = 201 A
message.origin_addr = local_addr N
message.link_type = €

m Property 2. if a message is received announcing
the establishment of a symmetrical link with a
given node (in this case with address '10.0.0.2")
then a previous message must have been received
from the same node broadcasting the creation of
an asymmetrical link.

Vmsg(sym_bcast_recv(*10.0.0.2°, msg, addr) —
3p msgemsgasym_beast_recv(*10.0.0.2°, p_msg, addr))

m Property 3: The formula will return true only if
when an MPR broadcast is observed by a node,
a broadcast establishing a symmetrical link
must have been observed before in the trace.

Vnsg (mpr_beast_recv(*10.0.0.2", msg, addr) —
3y msgemsgSym_beast_recv(‘10.0.0.2°, p_msg, addr))

Stephane Maag / TSP

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

m Property 4: Inorder to update their routing tables,
nodes must be kept regularly informed of changes in the
topology. TC messages are emitted periodically by each
MPR to all nodes in the network to declare its MPR
selector set. From this information, it is possible to
compute optimal routes from a node to any des‘rina‘rig.
Property 4 expresses that if the local node sends a
message broadcasting a list of neighbors, then at leasf one

of those neighbors must have declared the local noddafs
MPR.

nstitut TELECOM

Vinsg(te_beast(*10.0.0.2"7,msg, neigh_list) —

Ip msg<msq(mpr_becast_recv(*10.0.0.2°, p_msg, addT)P
Nin_neigh_list(addr, neigh_list)))

TELECOM
SudParis

OLSRd testing — Experimental results

m Inputs:

* properties file - Java

* PDML XML trace (Wireshark)

m Outputs:
e PASS, FAIL or INC

m Tool performance:

* Results for an ~100Mo trace /

100 000 packets.

m Results

Several Pass as expected!

Several Fail + Inc !

0 The Inc were expected (due
to the mobility, topology,
dynamicity and wireless
connections)

0| The Fail were not !
=> Still n analysis.

Property | PASS (T) | FAIL (?) | Total Time(s)
1 4 0 7.140
2 1419 0 356.72
3 3 0] 8.12
4 144 171 82.18

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

IMS / SIP Testbed — Alcatel-Lucent

® Main goal:

PoC XDM Presence VoiceMail

* To collect SIP traces on
the PoC Server, o & K

* To define functional PoC
properties to be tested,

POC VolP
Client Client

* To formalize them and to ———
provide both PDML XML |7
traces + Formulas in the
tool

=> To obtain test verdicts!

ELr—

H® *
A\

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy '55

SIP testing

Property: For every request there must be a response, within T=0.5s

Quantifier:
[(request (x) A x.method = “ACK” —
3,.« (nonprovisional (y) A Respond (y,x) A withintime(x,y)))

nonprovisonal (y) « y.statuscode > 200 l
A y.statuscode < 700 withintime(x,y) « ytime< xtime+ T

Respond (x,y) <« x.from= y.from
AXto=y.to
A xvia=yvia A
A x.Call-ID = y.Call-ID
/A X.cseq = y.cseq

SIP testing

Property: For request there must be a response, within T=0.5s

Quantifier:
[(request (x) A x.method = “ACK” —
3,.« (nonprovisional (y) A Respond (y,x) A withintime(x,y)))

Based on‘

Property: For every request there must be a response

Quantifier:
O (request (x) A x.method != “ACK” —
3,., (nonprovisional (y) A Respond (y,x)))

SIP testing

Property: For every request there must be a response, within T=0.5s

Quantifier:
[(request (x) A x.method = “ACK” —
3,.« (nonprovisional (y) A Respond (y,x) A withintime(x,y)))

Trace No. of Pass Fail Inc Time Trace No. of Pass Falil Inc Time
packets (ms) packets (ms)
1 500 33 0 322 9.21 1 500 150 335 0 8.67
2 1000 85 0 636 26.26 2 1000 318 687 0 27.11
3 1500 187 0 872 58.89 3 1500 504 1003 0 62.92
4 2000 427 0 1014 95.21 4 2000 674 1340 0 118.69
5 2500 535 0 1308 179.42 5 2500 798 1740 0 213.17

SIP testing

Trace No. of
packets

Trace No. of Pass Fall Inconclusive
packets

1 500 SiE 0 322 9.21 1 500 20 1 8.67
2 1000 85 0 636 26.26 2 1000 34 0 27.11
3 1500 187 0 872 58.89 3 1500 56 2 62.92
4 2000 427 0 1014 95.21 4 2000 101 0 118.69
5 2500 Ut 0 1308 179.42 5 2500 103 1 213.17

—O—Pass
—}— Pass (withinT1)

Inconclusive

—f— Inconclusive {within T11

Trace No. of Inconclusive
packets 250

al
—F— Fail twithin T1)

150 |

Timel(s)

—
=
— 1500

Number of messages

ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

SIP testing

Pass
—F— Pass twithin TT)

~&r— Inconclusive

—— Irconclusive (within T1)

Trace No. of Pass Con- Per- Inconclusive

Fail

packets Fail Fail 250 i)
1 500 20 0 334 1
2 1000 34 687 0
3 1500 56 1001 2
4 2000 101 1340 0
5 2500 103 1739 1 ™
Percentage of verdicts (%) ¢ s Number of messages
Pass: Per-Fail:
Indicates the messages satisfy all the Indicates the messages received by the SUT
requirements. exceeded the expected time T.
Con-Fail: Inconclusive:
Indicates the messages violate the No definite verdict can be returned.

data portion requirements.

SIP testing

For each INVITE request there should be a 2xx response, received within 16s

No. of Pass Con Per- Inconclusive
messages -Fall Fail

——n
—+— Fail @ithin T1)

0

_—
_—

/2000

1500

2500

0
0
0
0

Percentage of verdicts (%) 0 500

Number of Messages

For each REGISTER request there should be a 2xx response, received within 16s

Tra No. of Pass Con @ Per- Inconclusive
ce messages -Fail Fail

100 —+— Fail (within Ts)

97

-
; \ -
¥ _— 1000

Percentage of verdicts (%) 0 500

Number of messages

To conclude (if we can...)

Passive testing — in short Active testing — in short

f‘ ;
®m Relevant when: m Efficient when: s
® Access to the interface unavailable, * test suites generated automatically (frge

formal model, learning mechanisms, f

e Unreachable component, testing techniques,...) .

* SUT cannot be interrupted, e Testing architecture may easily evolve,
* SUT cannot be stimulated, ... * Disturbing the SUT is not an issue, ...
m Several syntax/semantics and m Several issues while applying the test
algorithms to check protocol suites and analyzing the obtained
requirements on traces verdicts
* High complexity < results for very * When to stop when the TCP is awaiting?
complex formulas may be provided after
days! * What verdict when no answers?

e Still offline =» tradeoff between offline, * What about the distributed systems with
storage and trace pruning multiple PCOs ?! =» clock synchronism,

e Many INC verdicts verdicts correlation, controllability, ...)

analysis/controllability of the environment * Component testing =» some components
needed. are not directly stimulated ®
* Study of eventual false CAUTION * What about the formal models in the

positives/negatives! industry?!
Yok

THIS IS SPARTA

REFERENCES

m Materials from L.Logrippo & J.Tretmans. Thanks a lot!

m [Hierons2009] R.Hierons et al., Using formal specications to support testing. ACM Computing Surveys, page 41(2):176, 2009.
m [ISO 9126] ISO/IEC 9126 Software engineering — Product quality

m [Bauer2011] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verication for LTL and TLTL. ACM Transactions on Software
Engineering and Methodology, 20(4):14, 2011.

m [Lalanne2013] Felipe Lalanne and Stephane Maag. A formal data-centric approach for passive testing of communication protocols. IEEE /
ACM Transactions on Networking, 21(3):788{801, 2013

m [Andres2012] Cesar Andres, Mercedes G Merayo, and Manuel Nu~nez. Formal passive testing of timed systems : theory and tools.
Software Testing, Verication and Reliability, 22(6):365{405, 2012.

m [Barna2011] C. Barna, M. Litoiu, and H. Ghanbari. Model-based performance testing: NIER track. In Proceedings of 33rd International
Conference on Software Engineering (ICSE), pages 872 {875, May 2011

m [Pakin2007] Scott Pakin. The design and implementation of a domain-specic language for network performance testing. IEEE Transactions
on Parallel Distributed System, 18(10):1436{1449, 2007.

m [Dumitrescu2004] Catalin Dumitrescu, loan Raicu, Matei Ripeanu, and lan Foster. Diperf: An automated distributed performance testing
framework. In Proceedings of 5th International Workshop in Grid Computing, pages 289{296. IEEE Computer Society, 2004.

Institut TELECOM

movar

CNRS

m [Bayse2005] E. Bayse, A. Cavalli, M. Nunez, and F. Zaidi. A passive testing approach based on invariants: application to the wap. Compute
Networks, pages 48(2):247{266, 2005.

=

0

m [Dorofeeva2010] Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, Nina Yevtushenko, FSM-based Conformance Testing
Methods: a Survey annotated with Experimental Evaluation, in Elsevier Information and Software Technology, Vol. 52, p.1286-1297, 2010.

Stephane Maag / TSP ADVCOMP 2014, August 24 - 28, 2014 - Roma, Italy

TELECOM

SudParis

[1®

m
i
= |

54 qiin

