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What 1s Big Data?




Big Data: definitions

Big Data as the three Vs:
Volume, Velocity, and Variety —

most well-known definition, first

coined by Doug Laney of Gartner
(source: D. Laney 3D Data Management:
Controlling Data Volume, Velocity, and
Variety in Application Delivery Strategies,
Meta Group, 6 February 2001)

Photo source: Forbes,
available at http://
www.forbes.com/sites/
gartnergroup/2012/05/22/
infonomics-the-practice-of-
information-economics/



1. Big Data: Volume

.According to IBM, 2.5 exabytes - that's 2.5 billion gigabytes (GB) -

of data was generated every day in 2012. [source: Matthew Wall

Big Data: Are you ready for blast-off? BBC News March 3, 2014 at
http://www.bbc.com/news/business-26383058] Volume:

According to IDC, in 2011 we created 1.8 zettabytes (or 1.8 trillion
GBs) of information, which is enough data to fill 57.5 billion 32GB terrabytes to
Apple iPads. That's enough iPads to build a Great iPad Wall of  ©Xabytes of
China twice as tall as the original. In 2012 it reached 2.8 zettabytes data to

and IDC now forecasts that we will generate 40 zettabytes (ZB) by Process

2020. Data

« to put the data explosion in context, consider this. Every Daia Data Data
minute of every day we create: e

- More than 204 million email messages
- Over 2 million Google search queries Dan Deim Data
- 48 hours of new YouTube videos o Dot Do
- 684,000 bits of content shared on Facebook Data  Data  Data
- More than 100,000 tweets Data  Data  Data

Data Data Data
Data Data Data

- $272,000 spent on e-commerce
[source: Webopedia, How much data is out there? Updated March
3, 2014 at
ttp://www.webopedia.com/quick_ref/just-how-much-data-is-out-
there.html]

Moore’s law: Doubling amount each year



2. Big Data: Variety

Data today comes in all types of formats - s '
from a standard productions systems or Varlet_y. ]
transaction databases to OLAP (Online data coming in
Analytical Processing) cubes. There are different formats
emails, stock or financial data and huge Data

percentage of non-numerical data. Currently, pgatg

there is a lot of new data formats and what is Data Data
worse, a lot of data is even in the unstructured
forms (images, audio, tweets, text messages,

server logs, and so on) Data  Data
- Relational data (tables, transaction, legacy Data

data) Bg:g Data
- Text data (web)
- Semi-structured data (XML) g%g Data
- Graph data Data

- Streaming data Data



2. Big Data: Variety

Currently most data — from social media applications
But sensor (machine) generated data is a much bigger story.

Fact: “Boeing jet engines can produce 10 terabytes of
operational information for every 30 minutes they turn. A four
engine jumbo jet can create 640 terabytes of data on just
one Atlantic crossing, multiply that by the more than 25,000

flights flown each day’[ source H.Kotadia Big Data: The Coming Sensor Data

Driven Productivity Revolution published July 21, 2012 at
http://hkotadia.com/archives/5000]

Opinion: Within the next three to five years, | expect to see
sensor data hit the crossover point, with unstructured data
generated by social media. From there, the former will
dominate by factors; not just by 10-20 percent, but by 10-20

times that of social media. Source:[K.Kwang Sensor data is data analytics'

future goldmine, ZDNet, JUne 11, 2010, http://www.zdnet.com/sensor-data-is-data-
analytics-future-goldmine-2062200657/]




3. Big Data: Velocity

Sensor and network Velocity:

technological developments ~ streaming data
msec to sec to

produce the data at an respond
unprecedented speed Data

Need to process these data Data

in real time Data  Data

Data
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Big Data definition: V?

Volume: Variety: Velocity:
terrabytes to n data coming in streaming data

exabytes of data  different formats msec to sec to
to process respond

B | (T iy 3 1 | Data

most well-known definition, first coined by Doug Laney of Gartner (source: D. Laney 3D Data
Management: Controlling Data Volume, Velocity, and Variety in Application Delivery Strategies, Meta Group, 6 February 20611)



Big Data: from V> to V*

Volume [ Variety * Velocity | Veracity
terrabytes __  data = streaming Data uncertainty
to exabytes ’ﬂ coming in data msec to | due
of datato different sec to Inaccuracy,

=y -
process m formats respond incompleteness,

4 Inconsistence,
Y Deception,
Alterations, etc.

12



Data: other definitions

from Big Data For §ummies by J. Hurwitz,F. Halper, M. Kaufman John Wiley & Sons,
March 2013

Big Data is the capability to manage the huge volume of
disparate data at the right speed, and at the right time frame
to allow real-time analysis and reaction

to M. Adrian, "It's going mainstream, and it's your next opportunity,” Teradata
Magazine, pp. 38-43, 2011

Big Data exceeds the reach of commonly used hardware
environments and software tools to capture, manage and
process it within a tolerable elapsed time for its user
population

and Wikipedia

Big data is an all-encompassing term for any collection of
data sets so large and complex that it becomes difficult to
process using traditional data processing applications.



Where 1s the Big Data solution?
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Where 1s the Big Data solution?




What is Data Quality (DQ)

* How to optimize decision making and planning?

« Metrics that engender trust in the processes that use/consume

the data

— How accurate are the data? (this is about measurement errors and
noise)

— How complete are the data ? (this is about missing data due to
equipment failures)

— How timely are the data? (this is about time delay)
— Are the data valid? (this is about time expiration or safety)
— Are the data authentic? (this is about origin and provenance)

— How big is the chance that the data have been maliciously altered?
(This is about security)

16
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What is Data Quality?

Data are of high quality "if they are fit for their intended
uses in operations, decision making and planning"”

(J M. Juran)....source: en.wikipedia.org/wiki/Data quality

How to integrate all of the metrics into an
indicator that demonstrates the data
suitability for a specific task and facilitates
decision making?



What is the role of technology?

Today, there are more things connected to the Internet than people
on the planet.

Applications of nano-technological devices significantly increase an
amount of data of rather poor quality.

There are more things already connected to the Internet than people
on the planet. CISCO IBSG group estimates the number of connected

devices at 25B in 2015 and 50B by 2020 [source: D. Evans, "Internet of
Things. How the next evolution of Internet is changing everything," ed: CISCO IBSG
group, 2011 ]

Current developments fusing multiple data sources with
various quality data and creating big data collections as
well as studies in novel areas such as nano-engineering
and technology have substantially advanced the
requirements on DQ.



What is the NEXT role of technology?

From current

EXTENSIVE development : FASTER collecting, communicating and
processing MORE and MORE DIVERSE data (V?)

To future

INTENSIVE developments: effective and efficient data
collection and presentation where and when they are
needed.

The Internet of Things (I0T) has the potential to transform
how and when decisions are made throughout business
and our daily lives, but only 1f that data can be processed
and analyzed effectively, and more importantly 1f data are
of high quality.



Data Quality Management

DQ Management

B \When new data are received (e.g. by
measurement, communicating or computing over
existing data) it is necessary to also derive DQ
metrics for the new data.

B To maintain proper DQ), it is necessary to have a
disciplined approach to the inference and
processing of DQ metrics.

20
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Data Quallty Management

) .
Source Data{ Data Processing Derived Data
Data Plane

Quality Plane oouree DQ{Quality Mapping | erived DQ




An Example Application:
Battlefield Monitoring Sensor Network

Data use point and time = where the
data is used for decision making

Data origin point and time = where the
data comes from

Region A Region C



Focus of Our Work

-

<

Data Quality at
the point of use

evaluated and
assured for

<€

Application:

where, when
and what for
data are used

in Dynamic Data Stream Environments

~

4
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Which problems do we address?

1.

DQ evaluation: Given the data collection scheme and the

data streams flows, the specified DQ composition and
calculus of various metrics, evaluate DQ at the decision
making point

DQ verification: under the same conditions, verify if the

DQ reaches a certain level

DQ assurance: given the same conditions and resource

availability, determine which conditions and resources
need to be modified to reach a certain DQ level



How do we target the application?

1. Task (application) Use the data provenance

determines the data schemes for an integral

collection scheme DQ composition and

and data stream flows calculus in DQ evaluation,
verification and assurance

2. Task (application) Target DQ metrics

determines the DQ
metrics composition
and calculus

composition at the mission
decision making

3. Task (application)
determines the
resource availability

Resource availability is a
key factor in DQ assurance



How do we do it?

Our Solution:

A Cyclic Distributed Hierarchical
Framework for

Data Quality Evaluation and
Assurance



How do we do it?

Part 1: DQ metrics content or which metrics to choose to
evaluate DQ?

Part 2: DQ integral composition and calculus or how to
integrate individual DQ metrics for decision making?

Part 3: Dynamic DQ evaluation and assurance based on
data provenance or how to take into account various
data streams and their merging in DQ evaluation?
(note the difference with metrics composition only in
part 2)

Part 4: System survivability and assurance with DQ or
how to assure that the given DQ level is reached under
the specified condition or which conditions are needed
to reach this level?
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How do we do it?

And now a bit more details about our
methods
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1 s DQ metrics definition and assignment
~

P

© storage Comm
sensor channel




Part 1: DQ metrics choice

Major research challenges:

« demonstrate metrics that are important to the range of
possible tasks

 measures must yield quantifiable information
(percentages, averages, numbers or order scales)

« data that supports the metrics need to be readily
obtainable in military data systems

« metrics must be useful for evaluating and assuring overall
DQ and tracking QE/QA system performance

Research results:

L. Reznik, "Integral Instrumentation Data Quality Evaluation: the Way to Enhance
Safety, Security, and Environment Impact," presented at the 2012 IEEE
International Instrumentation and Measurement Technology Conference, Graz,
Austria, May 13-16, 2012, 2012.

G. P. Timms, P. A. J. de Souza, L. Reznik, and D. V. Smith, "Automated Data
Quality Assessment of Marine Sensors," Sensors, vol. 11, pp. 9589-9602, 2011.




Metrics content: generic sample

Generic DQ mdicator/group Description
Attribute (Figurel)
Name
Time-since- Maintenance reliability The measure of the age of the device
Manufacturing
Time-since- Maintenance reliability The measure of the days since last service was performed in accord with
Service the servicing schedule
Time-since- Calibrationreliability The measure of the days since last calibration was performed in accord
Calibration with the calibration schedule
Temperature | Applicaton/'performance | The measure of temperature range within which the device will provide
Range optimum performance
Physical Physical securnity/security The number of reported incidents that allowed unauthonzed physical
Tampering contact with the device
Incidences
System Access control/securnty The measure of the number of unauthorized accesses mto the system,
Breaches denial of service attacks, Improper usage, suspicious investigations,
mcidences of malicious code.
System Secunty/secunty Measures presence of intrusion detection systems, firewalls, anti-virnses.
Securnity
Data Integrity | Vulnersbilities/securities Number of operating system vulnerabilities that were detected.
Environmental | Environment/environment Number of incidences reported that would subject the device to
Influences mechanical, acoustical and mboelectnc effects.
Amospheric | Environment/environment Number of incidences reported that would subject the device to
Influences magnetic, capacitive and radio frequencies.
Response Signals/reliability

Time between the change of the state and time taken to record the change




Metrics content: specific sample

4+

Device Name | Application specific Description
Quality indicator
Electric / Foucalt Disk Check to venify the matenal of the foucalt disk.
Power Meters Friction Difference in the measure of initial friction at the time of application of the
Compensation compensation and the current friction in the device.
Exposure to Measure of the number of incidences reported which would have caused the
Vibrations device o be subjected to extermal vibrations
Water Meters | Mounting Position | The measure of the number of days since regulatory check was performed to
observe the mounting position of the device.
Environmentsl Number of incidences reported which may have affected the mounting
Factors position of the device.
Particle Collection Measure of the amount of particle deposition |
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Table 1. Metrics examples: specification and calculation

Group

Security

Security

Measurement A ccuracy

Process safety and
performance

Measure 1D

Physical security

Cryptographic system and

Measurement

Process safety risk

incidents communication protection uncertainty
Goal Strategic: Ensure an Strategic: accelerate the Ensure collecting high Improve process
environment of’ development and use of a accuracy data from the safety by reducing
comprehensive security quality information data sources such risks as
and accountability for infrastructure equipment damage
personnel. facilities. and Security: allocate sufficient or business
products resources to adequately interruption due to
Security: Integrate protect an information wrong data use
physical and security infrastructure in a application
protection mechanisms
to ensure appropriate
protection of the data
sources and facilities
Measure Percentage (26) of Percentage of mobile Probability of the type A Probability that
physical security computers and other devices uncertainty value equipment damage
incidents involving that perform all cryptographic (random measurement or business
unauthorized entry to operations as recommended error) being within the interruption will not
facilities for this application range specified by the increase a specified
application for this data level
source

Calculation (number of physical (number of mobile computers Probability abowve 1s Probability above is

formula or security incidents and other devices that calculated based on the calculated based on

algorithm involving unauthorized perform all cryptographic standard deviation the business process
entry to facilities/total operations as recommended empirical estimate or analysis. equipment
number of access to for the application/total other probability costs. expert
facilities) *100 number of mobile computers characteristics available evaluations

and other devices)* 100
Target Should be a high (or low) percentage defined by the application

Implementation
evidence

How many physical
security incidents
involving unauthorized
entry to facilities
occurred over specified
period?

How many total entries
to facilities occurred
over specified period?

How many mobile computers
and devices are employved in
the application?

How many mobile computers
and devices employ
cryptography as prescribed?
How many mobile computers
and devices have
cryptography implementation
waivers?

Measurement results

Equipment costs,
process risk
evaluations. etc.

Frequency

Collection: defined by the organization
Reporting: defined by the application

Collection: defined by the application

Reporting: defined b

the application

Responsible Information owner: Information owner: defined Information collection Information owner:
parties defined by the by the organization (e.g. and measurement team Process safety team.
organization (e.g. information security officer) Operations and
physical security Information collector: defined maintenance team.,
officer) by the organization (e.g. Accounting team
Information collector: system administrators) Information
defined by the collector: deftined by
organization (e.g. the organization
computer security
incident response team)
Information Physical security Swystem and network security Measurement results Operations.
source incident report. physical plans database. sensor accounting and other

access control logs

networks or systems

databases

Report format

Percentage

and/or pie charts

As specified by

application

Documentation

NIST SP 800-53

NIST SP 800-53

Guide to the expression
of uncertainty In

measurement

ANSI/ISA-99.00.01
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Project content part 2:
Composition and calculus for DQ
evaluation and assurance

Major research challenge:

« developing a formal description for DQ compositions and an
operational calculus oriented towards applications

« Adjsting calculus procedures to a particular application

Prior research results:

L.Reznik and E.Bertino Data Quality Evaluation: Integrating Security and Accuracy, CCS "13: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, Berlin, November 2013
S.E.Lyshevsky and L.Reznik Information-theoretic estimates of communication and processing in nanoscale
and quantum optoelectronic systems, 2013 IEEE XXXIII International Scientific Conference on Electronics and
Nanotechnology (ELNANO), 16-19 April 2013, pp. 33-37

J. Podpora, L. Reznik, and G. Von Pless, "Intelligent Real-Time Adaptation for Power Efficiency in Sensor
Networks," Sensors Journal, IEEE, vol. 8, pp. 2066-2073, 2008.

L. Reznik and G. Von Pless, "Neural networks for cognitive sensor networks," in Neural Networks, 2008. [JCNN
2008 pp. 1235-1241.

L. Reznik, V. Kreinovich, and S. A. Starks, "Use of fuzzy expert's information in measurement and what we can
gain from its application in geophysics," in Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International
Conference on, 2003, pp. 1026-1031 vol.2.
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2- DQ indicators calculation and integration

P

© storage Comm
sensor channel
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DQ metrics calculation

Generic  Attribute | SeniesName | Formula to Compute Attribute Quality Score
Name
Time-since- Linear Senies | QS =MaxScore - (rate * mumber of years after manufacturing)
Manufacturing Exponeatial | QS=((Imitial Drop * MaxScore)*100) - & *(X), where,
Senes X =rate *( umber of years after mamufactunng -1)
Step Drop m-(m’(MMmmm/mhdmmem
Calibration Date | Linear Senigs | QS = MaxScore - (rate * mumber of months passed after the applicable calibration date)
Exponeatial | QS=((Imitial Drop * MaxScore)*100) - & *(X), where, _
Senes X =nate *( mumber of months passed after the applicable calibration date -1))
Step Drop QS = MaxScore - (rate * (number of months after calibration / mumber of penmissible
months betweea calibrations))
Physical Tampering | Linear Senies | QS = MaxScore - (rate * mumber of mcidents of physical tampering reported)
Expouetal | =il Diop * MasScre*10) - (), where,
Senes X =nate *( umber of incidents of physical tampermmg reported - 1))
Step Drop QS = MaxScore - (rate * (mumber of mcidents of physical tampering reported / number of

permissbe incidetsof physica tampering between drops))




Type A uncertainty evaluation

Type B uncertainty evaluation

L.Reznik From Big Data to Quality Data

QE/QA

Accuracy
evaluation

Calibration and verification
—

Maintenance, etc

Signal characteristics, etc —-r_*

Measurement
& reliability
evaluation

Overall

Vulnerability management

Access control, etc

quality
evaluation

Security
evaluation

Audit & accountability

Application performance

Application goals & standards |

Application
functionality
evaluation




DQ metrics integration:
Component model composition

4][B|=[4®B]
4®Bl*[c®D|=[4®B0C®D]

[A® BOC®D|* [EQ F®GOH |=[4®B®CRODRERF ®GRH |

... How about a network-scale application ?7? ...
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DQ metrics integ

* 1. weighted sum
2. logical function

I_repeazed pattern for all]

percent
daily log
FEVIEWS IS

for systems > 14%

minimum daily logging review

systems not
adequately

logging

minimum number of systems
with logging enabled > 89%

logging
N

—-—

critenia
for inapp

number
of systems
logging is

adequate

minimum weekly logging review!

for systems > 32%

N

systems not \
\ adequately

/

activity is
adequate

ration calculus

cntenia
for inapp.
actvity 15 no
adequate

definitions of inappropriate
activity exist

/ criteria
for inapp

\ actwity is not
adequate /

-—

»

minimum 6+ month logging review
for systems > 99%

/ percent percent
daily log daily log
reviews is reviews is
not adequg}e adequate

—

percent
weekly log
reviews is
adequate

minimum & month logging review|
for systems > 94%

minimum monthly logging review
for systems > 59%

percent
monthly log
reviews 1s

adequate

percent
6+ month log
reviews is
adequate

percent
6 month log
reviews is
adequate




DQ metrics integration

Type A uncertainty evaluation |

Type B uncertainty evaluation

Maintenance, etc

Calibration and verification —\_’
: ——p
AR e

Accuracy
evaluation

Signal characteristics, etc

Measurement |

& reliability
evaluation

Vulnerability management

Access control, etc

Security

evaluation |

Audit & accountability

Overall
quality
evaluation

Application performance

Application goals & standards

Preparefor =

'Dm ollection

Application
functionality
evaluation

Integrating various
metrics of data
accuracy, security and
safety

« Produce overall
evaluation

. Develop
recommendations for
Improvement

 Integrate for efficient
and effective mission
accomplishment
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Part 3:
Dynamic DQ evaluation and assurance based
on data provenance techniques

What is Provenance?

* In general, the origin, or history of something is known as
Its provenance.

* |n the context of computer science,

data provenance refers to information documenting how
data came to be in its current state - where it originated,
how it was generated, and the manipulations it
underwent since its creation.
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Project content part 3:
Dynamic DQ evaluation and assurance
based on data provenance techniques

Major research challenge:

 reflecting the system mobility and dynamic nature in the
DQ evaluation by developing data structures and
algorithms, which dynamically modify the DQ evaluation.

Prior research results:

‘L.Reznik and E.Bertino Data Quality Evaluation: Integrating Security and Accuracy, CCS '13:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security,
Berlin, November 2013

*H.S. Lim, Y.S. Moon, and E. Bertino, "Provenance-based Trustworthiness Assessment in
Sensor Networks," presented at the 7th Workshop on Data Management for Sensor Networks
(DMSN), in conjunction with VLDB, DMSN 2010, Singapore, 2010.

S. Sultana, M. Shehab, and E. Bertino, "Secure Provenance Transmission for Streaming Data,
IEEE Transactions on Knowledge and Data Engineering,, vol. PP, pp. 1-1, 2012.
Dai, H.-S. Lim, E. Bertino, and Y.-S. Moon, "Assessing the trustworthiness of location data

based on provenance," presented at the 17th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, ACM-GIS 2009, Seattle, WA, USA, 2009 44




Modeling Sensor Networks and
Data Provenance

» A sensor network be a graph, G(N,E)
— N={njn; is a network node of which identifier is i } : a set of sensor nodes
» aterminal node generates a data item and sends it to one or more intermediate or server nodes

* an intermediate node receives data items from terminal or intermediate nodes, and it passes
them to intermediate or server nodes

* a server node receives data items and evaluates continuous queries based on those items
— E={¢;| e, isanedge connecting nodes n;and n;.} : a set of edges connecting sensor
nodes
« A data provenance, p,
— pyis asubgraph of G

server n%

intermediate
nodes

Ao f

terminal (b) a simple path (c) an aggregate path (d) an arbitrary graph

nodes

(a) a physical network This slide was originally produced by E.Bertino (Purdue), modified by L.Reznik



Evaluating DQ > Computing DQ Levels

« DQ levels: quantitative measures of quality
— Data quality levels: indicate about how much we can trust the data items
— Node DQ levels: indicate about how much we can trust the sensor nodes
collect quality data

Levels provide an indication about the quality of data items/sensor nodes
=» and can be used for comparison or ranking purpose

» Interdependency between data and node DQ levels

DQ level of the node affects
The DQ level of the data created by the node

v

) I data arrives incrementall
T aoall | €m—————— Yy
Node DQ level Data quality Leveld : _______ in data stream environments
DQ of the data affects
The DQ score of the sensor nodes that created the data 46
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Table 2. Metrics calculus (sample) for data streams fusion

L.Reznik From Big Data to Quality Data

Measure ID Physical security incidents Cryptographic system and Measurement uncertainty
communication protection
Formula for the | P/A, C/D, Standard deviation estimate
data from one : : - 15 recommended as the
where P; is the number of physical | where C; is the mmber of computers and probabilty in Table 1 could
security accidents m the i-th part of the | other devices that perform all be calculated from i
network and A; is the total mmber of | cryptographic  operations s K
access attempts m this part recommended m the 1-th part of the
network and D;1s the total number of
devices m this part
Fusion of n data Zf} P. Z{t C. 5(2) =
streams formula T _ &=l e 1
otal = Total = Ly oz -2,
i=1 4 2i=1D; i
where Z, 1s measurement
from the 1-th data stream
and z 18 average from n
streams
Relationship P, P . C C, -
min" ¢/ 4. <Totalsmax"‘/ min if p. <Total<max ™ 5(z) < mins (Z;)
i i i i i i
Relationship if all _ s(2)
n fused data have Total =PVAi Total=Ci/Di 5(z) = / .

the same quaity




A Cyclic Framework for Computing
DQ Levels

« Current scores

Next scores
of nodes (S,)

of nodes (s,)

l

T

Current scores
of data items (Sz)

Intermediate
scores of nodes (én,D

A set of data items of the
same event
in a current window®

Intermediate scores of data 1

tems (4 P

« DQ level of a data item d
— The current level of d is the score computed from the current scores of its related nodes.

Next scores
of data items (5,))

— The intermediate DQ level of d is the score computed from a set (d €) D of data items of the same event.

— The next level of d is the score computed from its current and intermediate scores.

*  Quality level of a sensor node n

— The intermediate level of n is the score computed from the (next) scores of data items.
— The next level of n is the score computed from its current and intermediate scores.

— The current level of n, is the score assigned to that node at the last stage.
This slide was originally produced by E.Bertino (Purdue), modified by L.Reznik
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Planned

—Y

4 DQ re-adjustment through self- learnmg
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4. DQ re-adjustment through self-learq_i_qg
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5- DQ assurance

DQ analysis and
change
simulation in
CPS architecture
and data streams

Security and pnvacy\charactensncs of
computing and communication affect DQ

~ / . - ~
e / N - ’ \ ~ |

v ’,’I _/, \\ \s\\ ;
/ }v 4 Mﬂ
P q o ot n

Region C



Part 4:
System survivability and assurance with DQ

Major research challenges:

« developing DQ metrics and calculus procedures based on possible
reactions to internal changes and external inputs, e.g. malicious
alterations and attacks

« designing survivability assurance procedures based on DQ
evaluation and possible changes

Prior research results:

«J.Bacaj and L.Reznik Signal Anomaly Based Attack Detection in Wireless Sensor Networks, CCS '13:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin,
November 2013

L. Reznik, Von Pless, G.; Al Karim, T. Distributed Neural Networks for Signal Change Detection: On the
Way to Cognition in Sensor Networks, IEEE Sensors Journal, Volume 11 | Issue 3, March 2011, pp. 791-798

L. Reznik, M. J. Adams, and B. Woodard /ntelligent Intrusion Detection Based on Genetically Tuned
Artificial Neural Networks, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.14,
No.6 pp. 708-713, 2010

*M. Guirguis, J. Tharp, A. Bestavros, and |. Matta, "Assessment of Vulnerability of Content Adaptation
Mechanisms to RoQ Attacks," in Networks, 2009. ICN '09. Eighth International Conference on, 2009, pp.
445-450.

*M. Guirguis, A. Bestavros, |. Matta, and Z. Yuting, "Reduction of Quality (RoQ) Attacks on Dynamic Load
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DQ as Safety Constraints

* A system/process is safe if minimal DQ

constraints are met. Examples:

— A control system is safe if the delay of the feedback signal is
less than 10 msec and the noise to signal ratio is less than
9%.

— A target recognition system is trustworthy if the native
resolution of the video sensor is at least 720p.

— A collision avoidance system is safe if GPS location
accuracy is within 1 foot and delay is less than 0.1 sec.

« Assuming that DQ constraints on inputs hold,
the DQ on the output is assured.
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Compositional DQ analysis

* It's good to be able to show that a system is safe
given minimal DQ specs of its inputs

* |t’ s better to be able to show that the composition
of DQ-safe systems is also safe

|t s even better to be able to derive the DQ specs
necessary for a system to be safe

=» Need to do the above at scale!
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IMPLEMENTATION ISSUES



Seattle Testbed W
Platform .'_i_.

Tens of thousands of smartphones, tablets, laptops, ... used

In various educational projects
Networking, operating systems, security (~60 classes)
Thousands of researchers at hundreds of universities
Free
Easy to learn
Quick to get started
More info at
https://seattle.poly.edu

Seattle

Open Peer-to-Peer Computing

This slide was originally prepared by J.
Cappos (NYU), A. Rafetseder (UVienna),
Y. Zhuang(UBC & NYU), modified by

L.Reznik



Based on Seattle
platform

Sensibility: smart phone sensing for
science and other applications

Offered scientists an easy way to collect
real life data

Samples real data from smart phone

Sensors

Users already agreed to participate
Non-intrusive, not disturbing other daily activities
Security and privacy issues considered

This slide was originally prepared by J. Cappos (NYU), A. Rafetseder (UVienna), Y. Zhuang(UBC&NYU), modified by
L.Reznik



Sensibility Testbed

e Sensing capabilities

. . ?W{g'- -! .

i Frend

Pre-release (alpha)
http://sensibilitytestbed.

This slide was originally prepared by J. Cappos (NYU), A. Rafetseder (UVienna), Y. Zhuang(UBC&NYU), modified by
L.Reznik
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Software tools

DQ-Frame 15 the collecton of mwlhgsat softwam ageats
= | dstributed over vanous nodes from cluster heads (CH) of the
sensor networks to specialized SETVErs




Software tools

. DQ metrics assignment and
configuration

. DQ calculus

. DQ dynamic calculation based on the
provenance

. DQ analysis and assurance



Software tools

W = T e TS — e
DQ Host Name: localhost Port Name: 9999 Device Na... meter
aSS I g n I I l e nt Temperature Range: 15 Fto 45 F Assign Weight 20
a n d Select a Computation Series: (®) Trapezoidal () Bell Shaped () StepDrop Rate (R): .5
Physical Tampering: < Assign Weight: 25

configuration: -

Select a Computation Series: (®) Linear Series () Exponential Series () Step Drop Rate (R): 5

g e n e ri C System Breaches: T Assign Weight: H

metric Select a Computation Series: (® Linear Series () Exponential Series () Step Drop Rate (R): .5

Environmental Influences: 10 Assign Weight: 30

configuration _ | |
. Select a Computation Series: (®) Linear Series () Exponential Series () StepDrop Rate (R): .5
I n te rfa Ce Atmospheric influences: F Assign Weight: ?

po rtal Select a Computation Series: (®) Linear Series () Exponential Series () StepDrop Rate (R): 5

System Security: || Firewall |_J Antivirus || Intrusion Detection  Assign Weight: 20

|| Data Encryption

Submit L Dynamic Configuration J Exit




DQ
assignment
and

configuration:

specific
metric
configuration
interface
portal

Software tools

v——'——“

. conhiE |

Dynamic Configuration

Name: ExposureToVibrations

Assign Weight: 10

Descripti...
pe Number of incidences reported

N
which may have exposed the [
device to vibrations. v

>1K j‘?

Does is measure a specificrange:  ( Yes (®) No

Number of Incidences: 4

Select a Computation Series: () Linear Series () Exponential Series @ StepDrop Rate (R): 0.5
Drop period: 3  incidences

. Submit | | Add Another Indicator | | EBxt |
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Software tools: DQ visualization
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L.Reznik From Big Data to Quality Data

Software tools: D(Q analysis portal

Analyze Data Quality

@ Analyze - Data Quality

@l Area chart for Data quality

400
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0
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Bar Chart Example
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0.39653770271527

0.57059385700645

0.79724112795537

0.99713048944116

0.6156050905658

2012-09

Actions v A Notifications
@ Last data import 4 minutes ago
© Last device selection 12 minutes ago
Last device selected Nexus 5
@ Last sensor selection 15 minutes ago
Q Last sensor selected Accelerometer
I Last file upload 03:43 AM

@ Last filename uploaded Nexus5_Accelerometer.csv

© Server time 04:49 AM
2012-11  2013-01 2013-04 201306  2013-08  2013-10  2013-12 >~ Last file size 05 18
View All Alerts
Actions v

100 @l Donut Chart
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50

Missing Values
25
0 I
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Software tools: Database portal

devicedata

BROWSE SCRIPT COLUNNS PERMISSIONS
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Software tools: Sensor device portal

O

Sensor Status

Rate Accuracy




Software tools: Data category
assignment based on DQ

#O8 DATA SOURCE CLASSIFICATION USING DATA QUALITY INDICATORS - REPORT

----------------------------------- HUMIDITY SENSORS DATA ANALYSIS REPORT-----
emprature Sensor Accuracy for Device 1 : 29,14754% Pressure Sensor Accuracy for Device 1: 27.97407% Humidity Sensor Accuracy for Device 1 2.9804974%
emprature Sensor Accuracy for Device 2 ; 48.154404% Pressure Sensor Accuracy for Device 2 : 48.363758% Humidity Sensor Accuracy for Device 2: 64.65457%

emprature Sensor Accuracy for Device 3 : 18.255775% Pressure Sensor Accuracy for Device 3: 18.705696% Humidity Sensor Accuracy for Device 3 : 25.469204%
emprature Sensor Accuracy for Device 4 : 4.4422817% Pressure Sensor Accuracy for Device 4: 4.956477% Humidity Sensor Accuracy for Device 4 6.8957286%

DEVICES CLUSTERED AND DISAPLYED IN DESCENDING ORDER DEVICES CLUSTERED AND DISAPLYED IN DESCENDING ORDER
BASED ON DATA QUALITY INDICATORS FOR TEMPARATURE SENSORS  JBASED ON DATA QUALITY INDICATORS FOR PRESSURE SENSORS BASED ON DATA QUALITY INDICATORS FOR HUMIDITY SENSORS
Device2 belongs to cluster 1--> MOST ACCURATE TEMP SENSOR DEVICEADevice2 belongs to cluster 1--> MOST ACCURATE PRESSURE SOURCE  |Device2 belongs to cluster 1--> MOST ACCURATE SOURCE

Devicel belongs to cluster 2--> 2nd ACCURATE TEMP SENSOR DEVICE {Devicel belongs to cluster 2--> 2nd ACCURATE PRESSURE SENSOR DEVICEADevice3 belongs to cluster 2--> 2nd ACCURATE HUMIDITY SENSOR DEVICE
Device3 belongs to cluster 3--> 3rd ACCURATE TEMP SENSOR DEVICE  [Device3 belongs to cluster 3--> 3rd ACCURATE PRESSURE SENSOR DEVICE {Device4 belongs to cluster 3--> 3rd ACCURATE HUMIDITY SENSOR DEVICE
Deviced belongs to cluster 4--> 4th ACCURATE TEMP SENSOR DEVICE  |Deviced belongs to cluster 4--> 4th ACCURATE PRESSURE SENSOR DEVICE {Devicel belongs to cluster 4--> 4th ACCURATE HUMIDITY SENSOR DEVICE

DEVICES CLUSTERED AND DISAPLYED IN DESCENDING ORDER




L.Reznik From Big Data to Quality Data

DQ applications: Intrusion detection in

sensor networks
Study: detecting various attacks in sensor
networks by building classifiers using various
technological parameters (e.g. signal strength) and

DQ metrics
Most successful study: jamming attacks — see here

Sources: Jamming datascatter plo
J.Bacaj and L.Reznik Signal Anomaly 0 g "3
Based Attack Detection in Wireless Sensor _ 7
Networks, CCS '13: Proceedings of the

2013 ACM SIGSAC conference on
Computer & communications security,

72
73§

Signal Strength (SS) in dBm

Berlin, November 2013 [ R
W. Xu, Ke Ma, W. Trappe, and Y. 75 VTR RNt A
Zhang. Jamming sensor networks: Attack =~ sl
and defense strategies. In IEEE Network, Packat Nalivery Rafin (BNR) v 100%

volume 20, pages 41-47, June 2006.



DQ applications: Fuzzy logic expert system for DQ
evaluation in Tasmanian marine sensor network

A fuzzy rules-based system was implemented to assess the data

quality at the sensor level. The system includes provisions for both
Type A (rate of change of output values, cumulative rate of change
of output values and node differences) and Type B (time since last
calibration and time since last maintenance) uncertainty parameters.

SourceS: Qualtative Pl
G.P. Timms, P.A. de Souza, Jr., L. A | Pl

— ¥ Green

Reznik and D. V. Smith Automated Data  OUtpUS e

Quality Assessment of Marine Sensors, | | sttt
Sensors 2011, 11(10), p.9589-9602 et  Fuzzy Set

Difference between M
- System

G.P. Timms, P.A. de Souza, L. Reznik S

Time After Last

Automated assessment of data quality in Cabrt
Qe | et -

marine sensor networks, IEEE Tae O
International Conference OCEANS 2010wt
IEEE — Sydney, Australia, 24-27 May B —
2010, pp.1-5




DQ applications: Fuzzy logic expert system for DQ
evaluation in Tasmanian marine sensor network

An example of the membership function, for one of the temperature
sensors (EC-250) and the Seabird37 conductivity, temperature and
pressure sensors, is shown in Figure 2. Here, S (small), M (medium) and
L (large) refer to the error introduced in the sensor output by this metric,
time since last maintenance.

Sources:

G.P. Timms, P.A. de SOllZZl, Jl’., L. 1 Membershisgfnsc?igmo-n ﬁ%ﬂ'ﬁ'fnyczfgssf’ slolenirics
Reznik and D. V. Smith Automated e s Y A W S
Data Quality Assessment of Marine 08

Sensors, Sensors 2011, 11(10), p. o6,

9589-9602

044

G.P. Timms, P.A. de Souza, L.
Reznik Automated assessment of _
data quality in marine sensor 004
networks, IEEE International o ® e o o w0
Conference OCEANS 2010 IEEE — Time (G

Sydney, Australia, 24-27 May 2010,

pp.1-5

0.2 4




DQ applications: Fuzzy logic expert system for DQ
evaluation in Tasmanian marine sensor network

The system was initially applied to data collected at the CSIRO Wharf in Hobart
between 25 August and 5 November 2010. This node was composed of two
EC-250 temperature and conductivity sensors fixed to the wharf, one at a depth of
1.0 meters below chart datum and the other at a depth of 9.5 meters below chart
datum (chart datum was at the level of the lowest possible astronomical low tide).
The sensors were field calibrated in early September 2010, following their
deployment on 25 August 2010.

Results:

The automatically generated error bars were expressed as a percentage of the
manually-determined error bars over the 2672 datapoints for each of the four
Sensors.

The fuzzy system is much more successful when applied to the temperature
sensors than to the conductivity sensors. In the case of the temperature
sensors, the automatically generated error bars are within 50% of the
manually determined error bars for approximately 80% of the time,
compared with approximately 37% in the case of the conductivity sensors. The
fuzzy system is also more successful at estimating error bars for the deeper
sensors than for the shallower sensors.
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