From Big Data to Quality Data: What is the emerging sensor and network technology going to deliver next?

Leon Reznik, PhD

Professor of Computer Science and Computing Security Rochester Institute of Technology 102 Lomb Memorial Drive Rochester NY 14623 USA Ph.: 585 475 7210 Fax: 585 475 7100 email: <u>lr@cs.rit.edu</u> http://www.cs.rit.edu/~lr

In collaboration with: Elisa Bertino (Purdue U), Azer Bestavros (Boston U) Justin Cappos (New York U), Albert Rafetseder (U of Vienna), Yanyan Zhuang (UBC&NYU)

Data: old pictures

Data: recent pictures

Data: Current picture

What is Big Data?

Big Data: definitions

Big Data as the three Vs: Volume, Velocity, and Variety – most well-known definition, first coined by Doug Laney of Gartner (source: D. Laney 3D Data Management: Controlling Data Volume, Velocity, and Variety in Application Delivery Strategies, Meta Group, 6 February 2001)

Photo source: Forbes, available at http:// www.forbes.com/sites/ gartnergroup/2012/05/22/ infonomics-the-practice-ofinformation-economics/

1. Big Data: Volume

According to IBM, 2.5 exabytes - that's 2.5 billion gigabytes (GB) of data was generated every day in 2012. [source: Matthew Wall Big Data: Are you ready for blast-off? BBC News March 3, 2014 at <u>http://www.bbc.com/news/business-26383058</u>] According to IDC, in 2011 we created 1.8 zettabytes (or 1.8 trillion CBa) of information, which is enough data to fill 57.5 billion 220B

GBs) of information, which is enough data to fill 57.5 billion 32GB Apple iPads. That's enough iPads to build a Great iPad Wall of China twice as tall as the original. In 2012 it reached 2.8 zettabytes and IDC now forecasts that we will generate 40 zettabytes (ZB) by 2020.

- to put the data explosion in context, consider this. Every minute of every day we create:
- More than 204 million email messages
 - Over 2 million Google search queries
 - 48 hours of new YouTube videos
 - 684,000 bits of content shared on Facebook
 - More than 100,000 tweets
 - \$272,000 spent on e-commerce

[source: Webopedia, How much data is out there? Updated March 3, 2014 at

<u>ttp://www.webopedia.com/quick_ref/just-how-much-data-is-out-</u> <u>there.html</u>]

Moore's law: Doubling amount each year

Volume: terrabytes to exabytes of data to process

Data			
Data	Data	Data	
Data	Data	Data	

Data

2. Big Data: Variety

Data today comes in all types of formats from a standard productions systems or transaction databases to OLAP (Online Analytical Processing) cubes. There are emails, stock or financial data and huge percentage of non-numerical data. Currently, there is a lot of new data formats and what is worse, a lot of data is even in the unstructured forms (images, audio, tweets, text messages, server logs, and so on)

- Relational data (tables, transaction, legacy data)
- Text data (web)
- Semi-structured data (XML)
- Graph data
- Streaming data

	ety: oming in nt formats
Data	
Data	
Data Data	Data
Data Data	Data
Data <mark>Data</mark>	Data
<u>Data</u> Data	Data
Data Data	<u>Data</u>

2. Big Data: Variety

- Currently most data from social media applications
- But sensor (machine) generated data is a much bigger story.
- Fact: "Boeing jet engines can produce 10 terabytes of operational information for every 30 minutes they turn. A four engine jumbo jet can create 640 terabytes of data on just one Atlantic crossing, multiply that by the more than 25,000 flights flown each day" [Source H.Kotadia Big Data: The Coming Sensor Data Driven Productivity Revolution published July 21, 2012 at http://hkotadia.com/archives/5000]
- Opinion: Within the next three to five years, I expect to see sensor data hit the crossover point, with unstructured data generated by social media. From there, the former will dominate by factors; not just by 10-20 percent, but by 10-20 times that of social media. Source:[K.Kwang Sensor data is data analytics' future goldmine, ZDNet, JUne 11, 2010, http://www.zdnet.com/sensor-data-is-dataanalytics-future-goldmine-2062200657/]

3. Big Data: Velocity

- Sensor and network technological developments produce the data at an unprecedented speed
- Need to process these data in real time

Velocity: streaming data msec to sec to respond

Data Data Data Data Data Data Data Data

Data

Big Data definition: V³

most well-known definition, first coined by Doug Laney of Gartner (source: D. Laney 3D Data Management: Controlling Data Volume, Velocity, and Variety in Application Delivery Strategies, Meta Group, 6 February 20**1**)

Big Data: from V³ to V⁴

Big Data: other definitions

from Big Data For Dummies by J. Hurwitz, F. Halper, M. Kaufman John Wiley & Sons, March 2013

Big Data is the capability to manage the huge volume of disparate data at the right speed, and at the right time frame to allow real-time analysis and reaction

to M. Adrian, "It's going mainstream, and it's your next opportunity," *Teradata Magazine,* pp. 38-43, 2011

Big Data exceeds the reach of commonly used hardware environments and software tools to capture, manage and process it within a tolerable elapsed time for its user population

and Wikipedia

Big data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications.

Where is the Big Data solution?

Where is the Big Data solution?

What is Data Quality (DQ)

- How to optimize decision making and planning?
- Metrics that engender trust in the processes that use/consume the data
 - How accurate are the data? (this is about measurement errors and noise)
 - How complete are the data ? (this is about missing data due to equipment failures)
 - How timely are the data? (this is about time delay)
 - Are the data valid? (this is about time expiration or safety)
 - Are the data authentic? (this is about origin and provenance)
 - How big is the chance that the data have been maliciously altered? (This is about security)

- ...

What is Data Quality?

Data are of high quality "if they are fit for their intended uses in operations, decision making and planning" (J. M. Juran)....source: en.wikipedia.org/wiki/Data_quality

How to integrate all of the metrics into an indicator that demonstrates the data suitability for a specific task and facilitates decision making?

What is the role of technology?

Today, there are more things connected to the Internet than people on the planet.

Applications of nano-technological devices significantly increase an amount of data of rather poor quality.

There are more things already connected to the Internet than people on the planet. CISCO IBSG group estimates the number of connected devices at 25B in 2015 and 50B by 2020 [source: D. Evans, "Internet of Things. How the next evolution of Internet is changing everything," ed: CISCO IBSG group, 2011]

Current developments fusing multiple data sources with various quality data and creating big data collections as well as studies in novel areas such as nano-engineering and technology have substantially advanced the requirements on DQ.

What is the NEXT role of technology?

From current

EXTENSIVE development : FASTER collecting, communicating and processing MORE and MORE DIVERSE data (V³)

To future

INTENSIVE developments: effective and efficient data collection and presentation where and when they are needed.

The Internet of Things (IoT) has the potential to transform how and when decisions are made throughout business and our daily lives, but only if that data can be processed and analyzed effectively, and more importantly if data are of high quality.

Data Quality Management

DQ Management

- When new data are received (e.g. by measurement, communicating or computing over existing data) it is necessary to also derive DQ metrics for the new data.
- To maintain proper DQ, it is necessary to have a disciplined approach to the inference and processing of DQ metrics.

Data Quality Management

An Example Application: Battlefield Monitoring Sensor Network

Focus of Our Work

Which problems do we address?

- <u>DQ evaluation</u>: Given the data collection scheme and the data streams flows, the specified DQ composition and calculus of various metrics, evaluate DQ at the decision making point
- 2. <u>DQ verification</u>: under the same conditions, **verify if the DQ reaches a certain level**
- 3. <u>DQ assurance</u>: given the same conditions and resource availability, **determine which conditions and resources need to be modified to reach a certain DQ level**

How do we target the application?

1. Task (application) determines the data collection scheme and data stream flows

2. Task (application) determines the DQ metrics composition and calculus Use the data provenance schemes for an integral DQ composition and calculus in DQ evaluation, verification and assurance

Target DQ metrics composition at the mission decision making

3. Task (application) determines the resource availability

Resource availability is a key factor in DQ assurance

How do we do it?

Our Solution:

A Cyclic Distributed Hierarchical Framework for Data Quality Evaluation and Assurance

How do we do it?

Part 1: <u>DQ metrics content</u> or which metrics to choose to evaluate DQ?

Part 2: <u>DQ integral composition and calculus</u> or how to integrate individual DQ metrics for decision making?

Part 3: Dynamic DQ evaluation and assurance based on data provenance or how to take into account various data streams and their merging in DQ evaluation? (note the difference with metrics composition only in part 2)

Part 4: System survivability and assurance with DQ or how to assure that the given DQ level is reached under the specified condition or which conditions are needed to reach this level?

How do we do it?

And now a bit more details about our methods

1 DQ metrics definition and assignment data Communication storage

channel

sensor

Part 1: DQ metrics choice

Major research challenges:

- demonstrate metrics that are important to the range of possible tasks
- measures must yield quantifiable information (percentages, averages, numbers or order scales)
- data that supports the metrics need to be readily obtainable in military data systems
- metrics must be useful for evaluating and assuring overall DQ and tracking QE/QA system performance

Research results:

L. Reznik, "Integral Instrumentation Data Quality Evaluation: the Way to Enhance Safety, Security, and Environment Impact," presented at the 2012 IEEE International Instrumentation and Measurement Technology Conference, Graz, Austria, May 13-16, 2012, 2012.

G. P. Timms, P. A. J. de Souza, L. Reznik, and D. V. Smith, "Automated Data Quality Assessment of Marine Sensors," Sensors, vol. 11, pp. 9589-9602, 2011.

Metrics content: generic sample

Generic Attribute Name	DQ indicator/group (Figurel)	Description		
Time-since- Manufacturing	Maintenance/reliability	The measure of the age of the device		
Time-since- Service	Maintenance/reliability	The measure of the days since last service was performed in accord with the servicing schedule		
Time-since- Calibration	Calibration/reliability	The measure of the days since last calibration was performed in accor with the calibration schedule		
Temperature Range	Application/performance	The measure of temperature range within which the device will provide optimum performance		
Physical Tampering Incidences	Physical security/security	The number of reported incidents that allowed unauthorized physica contact with the device		
System Breaches	Access control/security	The measure of the number of unauthorized accesses into the system, denial of service attacks, improper usage, suspicious investigations, incidences of malicious code.		
System Security	Security/security	Measures presence of intrusion detection systems, firewalls, anti-viruses		
Data Integrity	Vulnerabilities/securities	Number of operating system vulnerabilities that were detected.		
Environmental Influences	Environment/environment			
Atmospheric Influences	Environment/environment	Number of incidences reported that would subject the device to magnetic, capacitive and radio frequencies.		
Response Time	Signals/reliability	Time between the change of the state and time taken to record the ch		

Metrics content: specific sample

Device Name	Application specific Quality indicator	Description	
Electric /	Foucalt Disk	Check to verify the material of the foucalt disk.	
Power Meters	Friction Compensation	Difference in the measure of initial friction at the time of application of the compensation and the current friction in the device.	
	Exposure to	Measure of the number of incidences reported which would have caused the	
	Vibrations	device to be subjected to external vibrations	
Water Meters Mounting Position		The measure of the number of days since regulatory check was performed to	
		observe the mounting position of the device.	
	Environmental	Number of incidences reported which may have affected the mounting	
	Factors	position of the device.	
	Particle Collection	Measure of the amount of particle deposition.	

~		trics examples: specification		
Group	Security	Security	Measurement Accuracy	Process safety and performance
Measure ID	Physical security incidents	Cryptographic system and communication protection	Measurement uncertainty	Process safety risk
Goal	Strategic: Ensure an environment of comprehensive security and accountability for personnel, facilities, and products Security: Integrate physical and security protection mechanisms to ensure appropriate protection of the data sources and facilities	Strategic: accelerate the development and use of a quality information infrastructure Security: allocate sufficient resources to adequately protect an information infrastructure in a application	Ensure collecting high accuracy data from the data sources	Improve process safety by reducing such risks as equipment damage or business interruption due to wrong data use
Measure	Percentage (%) of physical security incidents involving unauthorized entry to facilities	Percentage of mobile computers and other devices that perform all cryptographic operations as recommended for this application	Probability of the type A uncertainty value (random measurement error) being within the range specified by the application for this data source	Probability that equipment damage or business interruption will not increase a specified level
Calculation formula or algorithm	(number of physical security incidents involving unauthorized entry to facilities/total number of access to facilities) *100	(number of mobile computers and other devices that perform all cryptographic operations as recommended for the application/total number of mobile computers and other devices)*100	Probability above is calculated based on the standard deviation empirical estimate or other probability characteristics available	Probability above is calculated based on the business process analysis, equipment costs, expert evaluations
Target	She	ould be a high (or low) percentage	e defined by the application	
Implementation evidence	How many physical security incidents involving unauthorized entry to facilities occurred over specified period? How many total entries to facilities occurred over specified period?	How many mobile computers and devices are employed in the application? How many mobile computers and devices employ cryptography as prescribed? How many mobile computers and devices have cryptography implementation waivers?	Measurement results	Equipment costs, process risk evaluations, etc.
Frequency	Collection: defined by the organization		Collection: defined by the application	
Responsible parties	Information owner: defined by the organization (e.g. physical security officer) Information collector: defined by the organization (e.g. computer security incident response team)	ned by the application Information owner: defined by the organization (e.g. information security officer) Information collector: defined by the organization (e.g. system administrators)	Reporting: defined b Information collection and measurement team	Information owner: Process safety team. Operations and maintenance team, Accounting team Information collector: defined by the organization
Information source	Physical security incident report, physical	System and network security plans	Measurement results database, sensor	Operations, accounting and other
access control logs			networks or systems	databases
Report format Documentation	Percentage NIST SP 800-53	and/or pie charts NIST SP 800-53	As specified by Guide to the expression	application ANSI/ISA-99.00.01
			of uncertainty in measurement	

Table 1. Metrics examples: specification and calculation

ACCURACY of Data source RELIABILITY and SERVICIBILITY of facilities

DATA VALITY

Targeted at the application ACCOMPLISHED SECURITY ACCOMPLISHED SECURITY ACCOMPLISHED SECURITY

Project content part 2: *Composition and calculus for DQ evaluation and assurance*

Major research challenge:

- developing a formal description for DQ compositions and an operational calculus oriented towards applications
- Adjsting calculus procedures to a particular application

Prior research results:

L.Reznik and E.Bertino Data Quality Evaluation: Integrating Security and Accuracy, **CCS '13:** Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin, November 2013

S.E.Lyshevsky and L.Reznik Information-theoretic estimates of communication and processing in nanoscale and quantum optoelectronic systems, 2013 IEEE XXXIII International Scientific Conference on Electronics and Nanotechnology (ELNANO), 16-19 April 2013, pp. 33-37

J. Podpora, L. Reznik, and G. Von Pless, "Intelligent Real-Time Adaptation for Power Efficiency in Sensor Networks," Sensors Journal, IEEE, vol. 8, pp. 2066-2073, 2008.

L. Reznik and G. Von Pless, "Neural networks for cognitive sensor networks," in Neural Networks, 2008. IJCNN 2008 pp. 1235-1241.

L. Reznik, V. Kreinovich, and S. A. Starks, "Use of fuzzy expert's information in measurement and what we can gain from its application in geophysics," in Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on, 2003, pp. 1026-1031 vol.2.

2 DQ indicators calculation and integration

DQ metrics calculation

Generic Attribute	Series Name	Formula to Compute Attribute Quality Score		
Name				
Time-since-	Linear Series	QS = MaxScore - (rate * number of years after manufacturing)		
Manufacturing	Exponential	QS = ((Initial Drop * MaxScore)*100) - e ^(X), where,		
-	Series	X = rate *(number of years after manufacturing -1)		
	Step Drop	QS = MaxScore - (rate * (number of years after manufacturing / number of permissible years between drops))		
Calibration Date	Linear Series	QS = MaxScore - (rate * number of months passed after the applicable calibration date)		
	Exponential	QS = ((Initial Drop * MaxScore)*100) - e ^(X), where,		
	Series	X = rate *(number of months passed after the applicable calibration date -1))		
	Step Drop	QS = MaxScore - (rate * (number of months after calibration / number of permissible		
		months between calibrations))		
Physical Tampering	Linear Series	QS = MaxScore - (rate * number of incidents of physical tampering reported)		
	Exponential	QS = ((Initial Drop * MaxScore)*100) - e ^(X), where,		
	Series	X = rate *(number of incidents of physical tampering reported - 1))		
	Step Drop	QS = MaxScore - (rate * (number of incidents of physical tampering reported / number of		
		permissible incidents of physical tampering between drops))		

DQ metrics integration: Component model composition

$[A] \bullet [B] \Rightarrow [A \otimes B]$

$\begin{bmatrix} A \otimes B \end{bmatrix} \bullet \begin{bmatrix} C \otimes D \end{bmatrix} \Rightarrow \begin{bmatrix} A \otimes B \otimes C \otimes D \end{bmatrix}$ $\begin{bmatrix} A \otimes B \otimes C \otimes D \end{bmatrix} \bullet \begin{bmatrix} A \otimes B \otimes C \otimes D \end{bmatrix} \bullet \begin{bmatrix} A \otimes B \otimes C \otimes D \end{bmatrix} \bullet \begin{bmatrix} A \otimes B \otimes C \otimes D \otimes E \otimes F \otimes G \otimes H \end{bmatrix}$

... How about a network-scale application ??? ...

adequate

criteria

DQ metrics integration calculus

systems not for inapp. adequately activity is no logging 1. weighted sum adequate 2. logical function minimum number of systems definitions of inappropriate with logging enabled > 99% activity exist > systems not (adequately logging repeated pattern for all $\overline{}$ / criteria \sim for inapp. activity is not adequate / percent number criteria for inapp. of systems daily log activity is reviews is logging is adequate not adequa adequate minimum daily logging review minimum 6+ month logging review for systems > 14% for systems > 99% minimum weekly logging review minimum 6 month logging review for systems > 32% for systems > 94% / percent percent percent daily log daily log minimum monthly logging review for systems > 59% 6+ month log reviews is reviews is reviews is not adequate adequate adequate percent percent weekly log 6 month log reviews is reviews is adequate adequate percent monthly log reviews is

DQ metrics integration

- Integrating various metrics of data
 accuracy, security and safety
 - Produce overall evaluation
 - Develop recommendations for improvement
 - Integrate for efficient and effective mission accomplishment

Part 3: Dynamic DQ evaluation and assurance based on data provenance techniques

What is **Provenance?**

- In general, the origin, or history of something is known as its **provenance**.
- In the context of computer science,

data provenance refers to information documenting how data came to be in its current state - where it originated, how it was generated, and the manipulations it underwent since its creation.

Project content part 3: Dynamic DQ evaluation and assurance based on data provenance techniques

Major research challenge:

 reflecting the system mobility and dynamic nature in the DQ evaluation by developing data structures and algorithms, which dynamically modify the DQ evaluation.

Prior research results:

•L.Reznik and E.Bertino Data Quality Evaluation: Integrating Security and Accuracy, CCS '13: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin, November 2013

•H.S. Lim, Y.S. Moon, and E. Bertino, "Provenance-based Trustworthiness Assessment in Sensor Networks," presented at the 7th Workshop on Data Management for Sensor Networks (DMSN), in conjunction with VLDB, DMSN 2010, Singapore, 2010.

•S. Sultana, M. Shehab, and E. Bertino, "Secure Provenance Transmission for Streaming Data, IEEE Transactions on Knowledge and Data Engineering,, vol. PP, pp. 1-1, 2012.

•Dai, H.-S. Lim, E. Bertino, and Y.-S. Moon, "Assessing the trustworthiness of location data based on provenance," presented at the 17th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2009, Seattle, WA, USA, 2009 44

Modeling Sensor Networks and Data Provenance

- A sensor network be a graph, G(N,E)
 - $N = \{ n_i | n_i \text{ is a network node of which identifier is } i \}$: a set of sensor nodes
 - a *terminal node* generates a data item and sends it to one or more intermediate or server nodes
 - an *intermediate node* receives data items from terminal or intermediate nodes, and it passes them to intermediate or server nodes
 - a server node receives data items and evaluates continuous queries based on those items
 - $E = \{ e_{i,j} | e_{i,j} \text{ is an edge connecting nodes } n_i \text{ and } n_j \}$: a set of edges connecting sensor nodes
- A data provenance, p_d

(a) a physical network

This slide was originally produced by E.Bertino (Purdue), modified by L.Reznik

Evaluating DQ \rightarrow Computing DQ Levels

- DQ levels: *quantitative* measures of quality
 - Data quality levels: indicate about how much we can trust the data items
 - Node DQ levels: indicate about how much we can trust the sensor nodes collect quality data
 - Levels provide an indication about the quality of data items/sensor nodes
 - ➡ and can be used for comparison or ranking purpose
- Interdependency between data and node DQ levels

DQ of the data affects The DQ score of the sensor nodes that created the data

This slide was originally produced by E.Bertino (Purdue), modified by L.Reznik

Measure ID	Physical security incidents	Cryptographic system and communication protection	Measurement uncertainty
Formula for the data from one stream	P_i/A_i , where P_i is the number of physical security accidents in the i-th part of the network and A_i is the total number of access attempts in this part	C_i/D_i , where C_i is the number of computers and other devices that perform all cryptographic operations as recommended in the i-th part of the network and D_i is the total number of devices in this part	Standard deviation estimate is recommended as the probability in Table 1 could be calculated from it
Fusion of n data streams formula	$\text{Total} = \frac{\sum_{i=1}^{n} P_i}{\sum_{i=1}^{n} A_i}$	$\text{Total} = \frac{\sum_{i=1}^{n} C_i}{\sum_{i=1}^{n} D_i}$	$\begin{split} s(z) &= \\ \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^{n} (Z_i - z)^2, \\ \text{where } Z_i \text{ is measurement} \\ \text{from the i-th data stream} \\ \text{and } z \text{ is average from n} \\ \text{streams} \end{split}$
Relationship	$\min_{i} \frac{P_i}{A_i} \leq \text{Total} \leq \max_{i} \frac{P_i}{A_i}$	$\min_{i} \frac{C_i}{D_i} \leq \text{Total} \leq \max_{i} \frac{C_i}{D_i}$	$s(z) \le \min_i s(Z_i)$
Relationship if all n fused data have the same quality	Total =Pi/Ai	Total=Ci/Di	$s(z) = \frac{s(Z)}{\sqrt{n}}$

Table 2. Metrics calculus (sample) for data streams fusion

A Cyclic Framework for Computing DQ Levels

- DQ level of a data item d
 - The *current* level of *d* is the score computed from the current scores of its related nodes.
 - The *intermediate* DQ level of d is the score computed from a set $(d \in) D$ of data items of the same event.
 - The *next* level of *d* is the score computed from its current and intermediate scores.
- Quality level of a sensor node *n*
 - The *intermediate* level of *n* is the score computed from the (next) scores of data items.
 - The *next* level of *n* is the score computed from its current and intermediate scores.
 - The *current* level of *n*, is the score assigned to that node at the last stage.

This slide was originally produced by E.Bertino (Purdue), modified by L.Reznik

Planned

52

Part 4: System survivability and assurance with DQ

Major research challenges:

- developing DQ metrics and calculus procedures based on possible reactions to internal changes and external inputs, e.g. malicious alterations and attacks
- designing survivability assurance procedures based on DQ evaluation and possible changes

Prior research results:

•J.Bacaj and L.Reznik Signal Anomaly Based Attack Detection in Wireless Sensor Networks, CCS '13: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin, November 2013

L. Reznik, Von Pless, G.; Al Karim, T. Distributed Neural Networks for Signal Change Detection: On the Way to Cognition in Sensor Networks, IEEE Sensors Journal, Volume 11, Issue 3, March 2011, pp. 791-798

L. Reznik, M. J. Adams, and B. Woodard Intelligent Intrusion Detection Based on Genetically Tuned Artificial Neural Networks, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.14, No.6 pp. 708-713, 2010

•M. Guirguis, J. Tharp, A. Bestavros, and I. Matta, "Assessment of Vulnerability of Content Adaptation Mechanisms to RoQ Attacks," in Networks, 2009. ICN '09. Eighth International Conference on, 2009, pp. 445-450.

•M. Guirguis, A. Bestavros, I. Matta, and Z. Yuting, "Reduction of Quality (RoQ) Attacks on Dynamic Load Balancers: Vulnerability Assessment and Design Tradeoffs," in INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, 2007, pp. 857-865.

DQ as Safety Constraints

- A system/process is safe if minimal DQ constraints are met. Examples:
 - A control system is safe if the delay of the feedback signal is less than 10 msec and the noise to signal ratio is less than 5%.
 - A target recognition system is trustworthy if the native resolution of the video sensor is at least 720p.
 - A collision avoidance system is safe if GPS location accuracy is within 1 foot and delay is less than 0.1 sec.
- Assuming that DQ constraints on inputs hold, the DQ on the output is assured.

Compositional DQ analysis

- It's good to be able to show that a system is safe given minimal DQ specs of its inputs
- It's better to be able to show that the composition of DQ-safe systems is also safe
- It's even better to be able to derive the DQ specs necessary for a system to be safe
- ➔ Need to do the above at scale!

IMPLEMENTATION ISSUES

Seattle Testbed Platform

Tens of thousands of smartphones, tablets, laptops, ... used in various educational projects

Networking, operating systems, security (~60 classes) Thousands of researchers at hundreds of universities

Free

Easy to learn Quick to get started More info at https://seattle.poly.edu

This slide was originally prepared by J. Cappos (NYU), A. Rafetseder (UVienna), Y. Zhuang(UBC & NYU), modified by L.Reznik

Based on Seattle platform

Sensibility: smart phone sensing for science and other applications Offered scientists an easy way to collect real life data

Samples real data from smart phone sensors

Users already agreed to participate Non-intrusive, not disturbing other daily activities Security and privacy issues considered

This slide was originally prepared by J. Cappos (NYU), A. Rafetseder (UVienna), Y. Zhuang(UBC&NYU), modified by L.Reznik

Sensibility Testbed

Sensing capabilities

This slide was originally prepared by J. Cappos (NYU), A. Rafetseder (UVienna), Y. Zhuang(UBC&NYU), modified by L.Reznik

Software tools

- 1. DQ metrics assignment and configuration
- 2. DQ calculus
- 3. DQ dynamic calculation based on the provenance
- 4. DQ analysis and assurance

Software tools

DQ assignment and configuration: generic metric configuration interface portal

Host Name: localhost Port Name: 9999 Device Na meter
Temperature Range: 15 F to 45 F Assign Weight: 20
Select a Computation Series: Trapezoidal Bell Shaped Step Drop Rate (R): 5
Physical Tampering: 4 Assign Weight: 25
Select a Computation Series: Linear Series Exponential Series Step Drop Rate (R):
System Breaches: 5 Assign Weight: 40
Select a Computation Series: Linear Series Exponential Series Step Drop Rate (R): .5
Environmental Influences: 10 Assign Weight: 30
Select a Computation Series: Linear Series Exponential Series Step Drop Rate (R): .5
Atmospheric influences: 10 Assign Weight: 30
Select a Computation Series: Linear Series Exponential Series Step Drop Rate (R): .5
System Security: Firewall Antivirus Intrusion Detection Assign Weight: 20
Data Encryption
Submit Dynamic Configuration Exit

Software tools

DQ assignment and configuration: specific metric configuration interface portal

<u>*</u>	
	Dynamic Configuration
Name:	ExposureToVibrations
Assign Weight:	10
Descripti	Number of incidences reported which may have exposed the device to vibrations.
Does is measure a	a specific range: 🔾 Yes 💿 No
Number of Inciden	ces: 4
Select a Computat	ion Series: 🔘 Linear Series 🔘 Exponential Series 💿 Step Drop 🛛 Rate (R): 0.5
	Drop period: 3 incidences
Submit	Add Another Indicator Exit

Software tools: DQ visualization

Software tools: DQ analysis portal

nalyze - Data Quality

Analyze Data Quality

Notifications	
 Last data import 	4 minutes ago
O Last device selection	12 minutes ago
Last device selected	Nexus 5
O Last sensor selection	15 minutes ago
Q Last sensor selected	Accelerometer
Last file upload	03:43 AM
Last filename uploaded	Nexus5_Accelerometer.csv
O Server time	04:49 AM
► Last file size	25 MB

Actions -

N12

Software tools: Database portal

devicedata

BROWSE	COLDT	COLUMINS	PERMISSIONS
DRUDWSE	SCRUPT	COLUMNS	PERMISSIONS

gravity_cumulative	gravity_x	gravity_y	gravity_z	error_gravity	pressure
9.806644320416055	0.26007146686315535	0.3094634175300596	9.796309421539306	-0.00005567958394614436	1014.62
9.006644709407136	0.12720550820251458	0.3872726082801819	9.796169040679932	-0.000055290592863244115	1014.68
9.806626815801371	1.5907947897911072	2.1727607011795045	9.429055858012696	-0.00007318419862833991	1014.67
9.80664237546041	1.59035751247406	2.173910069465637	9.428466987609863	-0.00005762453958979563	1014.68
9.001643542433.045	1.5920359295045032	2.1661062717457742	9.450893011907958	-0.00095645756615635378	1014,704
9.801645487589254	0.21559645356155517	0.3416746732328415	9.790319010309355	-0.000054512610745405254	1014.59
9.806647045353307	0.23213997761276702	0.30723019540309904	9.799063805084228	-0.00005295664669269229	1014.64
9.806645487589254	1.5986060857772828	2.163631248474121	9.430453491210957	-0.000054512610745405254	1014.716
9.806644320416053	1.596863603591919	2.1776872654887696	9.427511596679688	-0.00005567958394614436	1014.68
9.806639263530577	0.19692760854959487	0.35295048773288727	9.799006938934326	-0.00006075646942164041	1014.590
9.806645098598205	1.596857213973999	2.1755001068115256	9.428018569946289	-0.00005490160179635106	1014.698
9.806645155442714	0.2056067595760681	0.35211352229118546	9.798902806964111	-0.0000568465572854593	1014.651
9.806643931424956	0.046016088686888345	0.6508776605129242	9.784012109375	-0.000056068575043255464	1014.745
9.80663965252186	0.25063802897930143	0.3038500637117386	9.798726177215576	-0.0000603474781390682	1014.601

Software tools: Sensor device portal

Registered		Sensor Status	0
Time Stamp	11/4/2014 10:37:06 PM	Device ID	353222060407254
Percentile		Gravity	x = -0.1586247, y=1.032016, z=9.750906
IP	192.168.1.13	Baromter	1013.183hPA
Device ID (IMEI)	353222060407254	Gyroscope	x = -0.009853696, y=-0.008255799, z=-0.01384844
Phone Number	13125088693	Magnetic Field	x = 6.48, y=-36.06, z=-38.4
Sim Serial Number	89014103254762439952	GPS	40.73542581,-74.07552618
Accelerometer	Sensor Status	Height	0.596965400800203
Compass Barometer		Humidity	
Rat	e Accuracy		Record
			Back

Software tools: Data category assignment based on DQ

⊗ ⊖ ⊕	DATA SOURCE CLASSIFICATION USING DATA QUALITY INDICATORS - REPORT					
TEMPARATURE SENSORS DATA ANALYSIS REF Temprature Sensor Accuracy for Device 1 : 29.14754% Temprature Sensor Accuracy for Device 2 : 48.154404% Temprature Sensor Accuracy for Device 3 : 18.255775% Temprature Sensor Accuracy for Device 4 : 4.4422817%	Pressure Sensor Accuracy for Device 1 : 27.97407% Pressure Sensor Accuracy for Device 2 : 48.363758% Pressure Sensor Accuracy for Device 3 : 18.705696%	HUMIDITY SENSORS DATA ANALYSIS REPORT Humidity Sensor Accuracy for Device 1 : 2.9804974% Humidity Sensor Accuracy for Device 2 : 64.65457% Humidity Sensor Accuracy for Device 3 : 25.469204% Humidity Sensor Accuracy for Device 4 : 6.8957286%				
BASED ON DATA QUALITY INDICATORS FOR TEMPARATURE SENSORS Device2 belongs to cluster 1> MOST ACCURATE TEMP SENSOR DEVICE Device1 belongs to cluster 2> 2nd ACCURATE TEMP SENSOR DEVICE Device3 belongs to cluster 3> 3rd ACCURATE TEMP SENSOR DEVICE	Device1 belongs to cluster 2> 2nd ACCURATE PRESSURE SENSOR DEVI Device3 belongs to cluster 3> 3rd ACCURATE PRESSURE SENSOR DEVIC	DEVICES CLUSTERED AND DISAPLYED IN DESCENDING ORDER BASED ON DATA QUALITY INDICATORS FOR HUMIDITY SENSORS Device2 belongs to cluster 1> MOST ACCURATE SOURCE CE Device3 belongs to cluster 2> 2nd ACCURATE HUMIDITY SENSOR DEVICE Device4 belongs to cluster 3> 3rd ACCURATE HUMIDITY SENSOR DEVICE CE Device1 belongs to cluster 4> 4th ACCURATE HUMIDITY SENSOR DEVICE				

DQ applications: Intrusion detection in

sensor networks

Study: detecting various attacks in sensor networks by building classifiers using various technological parameters (e.g. signal strength) and DQ metrics

Most successful study: jamming attacks – see here Sources:

J.Bacaj and L.Reznik Signal Anomaly Based Attack Detection in Wireless Sensor Networks, **CCS '13:** Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin, November 2013

W. Xu, Ke Ma, W. Trappe, and Y.

Zhang. Jamming sensor networks: Attack and defense strategies. In IEEE Network, volume 20, pages 41-47, June 2006.

DQ applications: Fuzzy logic expert system for DQ evaluation in Tasmanian marine sensor network

A fuzzy rules-based system was implemented to assess the data quality at the sensor level. The system includes provisions for both Type A (rate of change of output values, cumulative rate of change of output values and node differences) and Type B (time since last calibration and time since last maintenance) uncertainty parameters.

Sources:

G.P. Timms, P.A. de Souza, Jr., L.
Reznik and D. V. Smith Automated Data Quality Assessment of Marine Sensors, Sensors 2011, 11(10), p.9589-9602
G.P. Timms, P.A. de Souza, L. Reznik Automated assessment of data quality in marine sensor networks, IEEE International Conference OCEANS 2010
IEEE – Sydney, Australia, 24-27 May 2010, pp.1-5

DQ applications: Fuzzy logic expert system for DQ evaluation in Tasmanian marine sensor network

An example of the membership function, for one of the temperature sensors (EC-250) and the Seabird37 conductivity, temperature and pressure sensors, is shown in Figure 2. Here, S (small), M (medium) and L (large) refer to the error introduced in the sensor output by this metric, time since last maintenance.

Sources:

G.P. Timms, P.A. de Souza, Jr., L. Reznik and D. V. Smith Automated Data Quality Assessment of Marine Sensors, Sensors 2011, 11(10), p. 9589-9602

G.P. Timms, P.A. de Souza, L.

Reznik Automated assessment of data quality in marine sensor networks, IEEE International Conference OCEANS 2010 IEEE – Sydney, Australia, 24-27 May 2010, pp.1-5

DQ applications: Fuzzy logic expert system for DQ evaluation in Tasmanian marine sensor network

The system was initially applied to data collected at the CSIRO Wharf in Hobart between 25 August and 5 November 2010. This node was composed of two EC-250 temperature and conductivity sensors fixed to the wharf, one at a depth of 1.0 meters below chart datum and the other at a depth of 9.5 meters below chart datum (chart datum was at the level of the lowest possible astronomical low tide). The sensors were field calibrated in early September 2010, following their deployment on 25 August 2010.

Results:

The automatically generated error bars were expressed as a percentage of the manually-determined error bars over the 2672 datapoints for each of the four sensors.

The fuzzy system is much more successful when applied to the temperature sensors than to the conductivity sensors. In the case of the temperature sensors, the automatically generated error bars are within 50% of the manually determined error bars for approximately 80% of the time, compared with approximately 37% in the case of the conductivity sensors. The fuzzy system is also more successful at estimating error bars for the deeper sensors than for the shallower sensors.

Big and Quality THANK YOU!

Leon Reznik, PhD Professor of Computer Science and Computing Security Rochester Institute of Technology 102 Lomb Memorial Drive Rochester NY 14623 USA Ph.: 585 475 7210 Fax: 585 475 7100 email: <u>1</u> http://www.cs.rit.edu/~lr

