

Important things first: Where to find additional information?

- Online: Visit <u>http://we.analyzegenomes.com</u> for latest research results, tools, and news
- <u>Offline</u>: Read more about it, e.g. High-Performance In-Memory Genome Data Analysis: How In-Memory Database Technology Accelerates Personalized Medicine, In-Memory Data Management Research, Springer, ISBN: 978-3-319-03034-0, 2014
- In Person: Join us for the International Workshop on Big Data in Bioinformatics and Healthcare Informatics (BBH14) in Washington D.C. on Oct 27, 2014 (<u>http://bbh14.analyzegenomes.com</u>)

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Who you are dealing with?

158,952 km

This is the number of kilometres that you have already clocked up on your travels.

Flights around earth	3.966
Flights to moon	0.414
Shortest flight	FRA-AMS (367 km)
Longest flight	MUC-SFO (9,437 km)
Northernmost airport	Dublin (DUB)
Southernmost airport	Miami International, FL (MIA)

- Software Engineer by training (B.Sc., M.Sc., PhD)
- 2006-2014 with SAP
- Since 2007 at Chair of Prof. Hasso Plattner, HPI
- Since 2009 focusing on Life Sciences / E-Health

matthieu schapranow

Dr.-Ing. Matthieu Schapranow

Hasso Plattner Institute, SAP, Travel IQ

Berlin Area, Germany | Research

Education Universität Potsdam

Complete your profile

Previous

Program Manager E-Health at Hasso Plattner Institute

Edit Profile

441 connections

Web	Images	Videos	News	Maps	More -	Search tools	

About 4,090 results (0.30 seconds)

MatthieuSchapranow - Enterprise Platform and Integration ... https://epic.hpi.uni-potsdam.de/Home/MatthieuSchapranow -

Dr. Matthieu-P. Schapranow received a PhD in Software Engineering from University of Potsdam in Germany in 2012. He also received BSc and MSc degrees in ...

Matthieu Schapranow presentations | SlideShare www.slideshare.net/schappy -Alle Präsentationen von Matthieu Schapranow ansehen.

Dr. Matthieu Schapranow, HPI - Speaker - CeBIT 2014 www.cebit.de/speaker/dr.-matthieu-schapranow-hp//995 Dr. Matthieu-P. Schapranow received a PhD in Software Engineering from University of Potsdam in Germany in 2012. He also received BSc and MSc degrees in ...

Images for matthieu schapranow

Report images

More images for matthieu schapranow

Matthieu-P. Schapranow - ResearchGate

www.researchgate.net/profile/Matthieu-P_Schapranow Researcher » Matthieu-P. Schapranow, Hasso Plattner Institute, Research Group Enterprise Platform and Integration Concepts (EPIC), Germany, Databases, ...

[PDF] Real-time Analysis of Next Generation Sequencing Data

www.worldhealthsummit.org/.../Neinel_Christoph_Presentation_World... Real-time Analysis of. Next Generation Sequencing Data. World Health Summit. Oct 24, 2012. Prof. Dr. Christoph Meinel. Matthieu Schapranow. Hasso Plattner ...

Dr. Matthieu-P. Schapranow - Google Scholar Citations scholar.google.de/citations?user=0TD5OI0AAAAJ&hl=en

Principal Investigator of In-Memory Technology for Life Sciences, Hasso Plattner Institute, Potsdam - hpi.uni-potsdam.de Security aspects in vulnerable RFID-aided supply chains. MP Schapranow, J Müller, A

Zeier, H Plattner. RFID Systems and Technologies (RFID SysTech), 2009 ...

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Where do I work? Hasso Plattner Institute, Potsdam, Germany

Hasso Plattner Institute Key Facts

- Founded as a public-private partnership in 1998 in Potsdam near Berlin, Germany
- Institute belongs to the University of Potsdam
- Ranked 1st in CHE since 2009
- 500 B.Sc. and M.Sc. students
- 10 professors, 150 PhD students

Course of study: IT Systems Engineering

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Hasso Plattner Institute Programs

- Full university curriculum
- Bachelor (6 semesters)
- Master (4 semesters)
- Orthogonal Activities:
 - F-Health Consortium
 - □ School of Design Thinking
 - □ Research School

Precision Medicine? Dr. Schapranow, GLOBAL

Status: February 2013

Hasso Plattner Institute Enterprise Platform and Integration Concepts Group

- Research focuses on the technical aspects of enterprise software and design of complex applications
 - In-Memory Data Management for Enterprise Applications
 - Enterprise Application Programming Model
 - Scientific Data Management
 - Human-Centered Software Design and Engineering
- Industry cooperations, e.g. SAP, Siemens, Audi, and EADS
- Research cooperations, e.g. Stanford, MIT, and Berkeley

The Setting Actors in Oncology

- Individual anamnesis, family history, and background
- Require fast access to individualized therapy

Clinicians

- Identify root and extent of disease using laboratory tests
- Evaluate therapy alternatives, adapt existing therapy

Researchers

- □ Conduct laboratory work, e.g. analyze patient samples
 - Create new research findings and come-up with treatment alternatives

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Our Motivation Make Precision Medicine Come Routine in Real Life

- Motivation: Can we enable **patients** to:
 - Understand and monitor their diseases to document the impact on their lives,
 - Receive latest information about their (chronic) diseases,
 - <u>Cooperatively</u> exchange with physicians and patients to improve quality of living

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Our Motivation Make Precision Medicine Come Routine in Real Life (cont'd)

- Motivation: Can we enable **clinicians** to take their therapy decisions:
 - Incorporating <u>all available specifics</u> about each individual patient,
 - □ Referencing latest lab results and worldwide medical knowledge, and
 - Interactively during their ward round?

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

IT Challenge: How to Integrate Distributed and Heterogeneous Sources of Big Medical Data

Human genome/biological data 600GB per full genome 15PB+ in databases of leading institutes

Human proteome

160M data points (2.4GB) per sample >3TB raw proteome data in ProteomicsDB

Hospital information systems Often more than 50GB

Cancer patient records >160k records at NCT

PubMed database
>23M articles

Medical sensor data Scan of a single organ in 1s creates 10GB of raw data

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL

HEALTH, Aug 27, 2014

Ρχ

Prescription data

1.5B records from 10,000 doctors and 10M Patients (100 GB)

Clinical trials

Currently more than 30k recruiting on ClinicalTrials.gov

Our Methodology Design Thinking Methodology

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Our Technology: In-Memory Database Technology Enabling Real-time Data Analysis

Hasso Plattner

nstitut

Our Approach: Analyze Genomes – A Cloud Platform Enabling Real-time Analysis of Big Medical Data

Hasso Plattner

Institut

Real-time Processing of Event Data from Medical Sensors

 ● ● ■ ● ● ● ■
 ● ● ■ ● ● ● ●

 Your average temperature has been to high over the past day. This could be an indicator for an desease or ■

 MS-Attack. Please contact your doctor.

t Comp

Comparison of waveform data with history of similar patients

- Processing of sensor data, e.g. from Intensive Care Units (ICUs) or wearable sensor devices (quantify self)
- Multi-modal real-time analysis to detect indicators for severe events, such as heart attacks or strokes
- Incorporates machine-learning algorithms to detect

severe events and to inform clinical personnel in time

 Successfully tested with 100 Hz event rate, i.e. sufficient for ICU use

Hasso Plattnei

CSAIL

Harvard–MIT Health Sciences & Technology

Future SOC Lab

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Drug Safety Statistical Analysis of Drug Side Effects Data

Min Support	Min Confidence	Max Length Pr	erule Max Len	igth Postrule			
0.002	0.002	2	2		5	EARCH	
Results for Side Ef	fects ARM				Fuzzy Fil	ter Darvoj	
Drugs			Side Effects		Support	Confidence	Lift
DARVON + Darvocet			Nervous system disord	0.003784	1.00	158.24	
DARVON + PROPOXYPHENE NAPSYLATE AND ACETAMINOPHEN			Nervous system disorde	0.004371	0.88	139.66	
Darvocet + PROPOCYPHENE NAPSYLATE AND ACETAMINOPHEN			Nervous system disorde	0.003784	1.00	158.24	
DARVON + Darvocet			Movement disorder		0.003784	1.00	167.81
DARVON + PROPOXYPHENE NAPSYLATE AND ACETAMINOPHEN			Movement disorder		0.004371	0.88	148.11
DARVON + Darvocet			Cardiovascular disorder		0.003784	1.00	158.64
DARVON + PROPOXYPHENE NAPSYLATE AND ACETAMINOPHEN			Cardiovascular disorder		0.004366	0.88	139.85
Darvocet + PROPOXYPHENE NAPSYLATE AND ACETAMINOPHEN			Movement disorder		0.003784	1.00	167.81
Darvocet + PROPOXYP	PHENE NAPSYLATE AND ACETAMINOPH	IEN	Cardiovascular disorder		0.003784	1.00	158.64
DARVON + Darvocet			Nervous system disorde	er + Movement disorder	0.003784	1.00	218.04

- Combines confirmed side effect data from different data sources
- Interactive statistical analysis, e.g. apriori rules, to discover still unknown interactions
- Integrates personal prescription data and directly report side effects
- Work together with your doctor to prevent interaction with already prescribed drugs

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Unified access to international side effect data

 $\operatorname{Her}_{\mathrm{I}}(\mathcal{A}) \to \operatorname{Her}_{\mathrm{I}}(\mathcal{A})$

On-the-fly extension of database schema to add side effect databases

Medical Knowledge Cockpit

Unified access to structured and un-structured data sources

Automatic clinical trial matching build on text analysis features

- Search for affected genes in distributed and heterogeneous data sources
- Immediate exploration of relevant information, such as
 - Gene descriptions,
 - Molecular impact and related pathways,
 - Scientific publications, and
 - □ Suitable clinical trials.
- No manual searching for hours or days: In-memory technology translates searching into interactive finding!

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Medical Knowledge Cockpit Publications

- In-place preview of relevant data, such as publications and publication meta data
- Incorporating individual filter settings, e.g. additional search terms

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Medical Knowledge Cockpit Latest Clinical Trials

		Clinical Trials 🖆
Pathways 🗗	•	
		Internal
Non-small cell lung cancer		 FLO +/- Pazopanib as First-line Treatment in Advanced Gastric Cancer (PaFLO)
Homo sapiens (human)	5 genes	
		External Less
Prostate cancer	Egonoo	Molecular Profiling and Targeted Therapy for Advanced Non-Small Cell Lung Cancer, Small Cell Lung Cancer, and
Homo sapiens (human)	5 genes	Thymic Malignancies
ErbB signaling pathway		Erlotinib and Temsirolimus for Solid Tumors
Homo sapiens (human)	5 genes	Molecular Epidemiology of Lung Adenocarcinoma in Multi-ethnic Asian Phenotype
	- 30.000	French National Observatory of the Patients With Non-small Cell Lung (NSCLC) and Molecular Testings
Endometrial cancer		Trial of MEK Inhibitor and PI3K/mTOR Inhibitor in Subjects With Locally Advanced or Metastatic Solid Tumors
Homo sapiens (human)	5 genes	 Safety, Pharmacokinetics and Pharmacodynamics of BKM120 Plus MEK162 in Selected Advanced Solid Tumor Patients
Pathways in cancer		Molecular Analysis of Thoracic Malignancies
Homo sapiens (human)	5 genes	Randomized Phase II Study of AZD6244 (Mitogen-activated Protein Kinase Inhibitor) MEK-Inhibitor With Erlotinib in
	e genee	KRAS Wild Type Advanced Non-Small Cell Lung Cancer (NSCLC) and a Randomized Phase II Study of AZD6244
Bladder cancer		With Erlotinib in Mutant KRAS Adva
Homo sapiens (human)	5 genes	Lung Cancer in Women Treated With Anti-oestrogens anD Inhibitors of EGFR (LADIE)
	-	Ad/HER2/Neu Dendritic Cell Cancer Vaccine Testing S0819: Carboplatin/Paclitaxel With or Without Bevacizumab and/or Cetuximab in Stage IV or Recurrent Non-Small
Glioma		Soores. Carboplatin/Pacificatel with or without Bevacizumab and/or Cetuxilinab in Stage IV or Recurrent Non-Small Cell Lung Cancer
Homo sapiens (human)	4 genes	Single Nucleotide Polymorphism(SNP)Study
		 PF-00299804 in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer That Has Not Responded
Melanoma		to Standard Therapy for Advanced or Metastatic Cancer
Homo sapiens (human)	4 genes	Erlotinib Plus Tivantinib (ARQ 197) Versus Single Agent Chemotherapy in Locally Advanced or Metastatic Non-Small
Hopotitic C		Cell Lung Cancer

- Personalized clinical trials, e.g. by incorporating patient specifics
- Classification of internal/external trials based on treating institute

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Medical Knowledge Seamless Integration of Patient Specifics

Medical Knowledge Cockpit			
Enter search terms How about A2M, AADAT or PIK3CA? NRAS BRAF EGFR KRAS non-small cell lung cancer ×	Search	Charité	Jane Dough female, 48 years, non-smoker Markers KRAS, EGFR, BRAF, NRAS Diagnosis non-small cell lung cancer, stage IV

- Google-like user interface for searching data
- Seamless integration of individual EMR data
- Search various sources for biomarkers, literature, and diseases

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Medical Knowledge Cockpit Publications

- Interactively explore relevant publications, e.g. PDFs
- Improved ease of exploration, e.g. by highlighted medical terms and relevant concepts

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Medical Knowledge Cockpit Pathway Topology Analysis

Unified access to multiple formerly disjoint data sources

- Search in pathways is limited to "is a certain element contained" today
- Integrated >1,5k pathways from international sources, e.g. KEGG, HumanCyc, and WikiPathways, into HANA
- Implemented graph-based topology exploration and ranking based on patient specifics
- Enables interactive identification of possible dysfunctions affecting the course of a therapy before its start

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL

HEALTH, Aug 27, 2014

Pathway analysis of genetic variants with graph engine

Medical Knowledge Cockpit Search in Structured and Unstructured Medical Data

terminology

47 categories)

30,138 recruiting)

periods

Clinical Trials

Internal

- Panitumumab Plus Pemetrexed and Cisplatin (PemCisP) Versus Peme
- FLO +/- Pazopanib as First-line Treatment in Advanced Gastric Cancel

External

- Molecular Profiling and Targeted Therapy for Advanced Non-Small Company
- Erlotinib and Temsirolimus for Solid Tumors
- Molecular Epidemiology of Lung Adenocarcinoma in Multi-ethnic Asia
- · Safety and Efficacy Study of Neratinib and Cetuximab to Treat Patient · French National Observatory of the Patients With Non-small Cell Lung

Unified access to structured and

unstructured data sources Extracted, e.g., 320k genes, 161k ingredients, 30k

Select studies based on multiple filters in less than Clinical trial matching using text analysis features 500ms

Indexed clinicaltrials.gov database (145k trials/

Extended text analysis feature by medical

Genes (122,975 + 186,771 synonyms)

Pharmaceutical ingredients (7,099)

Medical terms and categories (98,886 diseases,

How Real-time **Analysis turns Big** Medical Data into **Precision Medicine?**

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Cloud-based Services for Processing of DNA Data

vze valeta

Genome file: Upload or choose a file		Pipeline category:	Pipeline:			
		Select pipeline category	Select pipeline		Processi	
Recent	alignment tasks					
Pages:	1 2 3 4 5 6 29 (30 r	ows per page)				
ID	Progress	Pipeline			Results	Cost
1458	Completed in 00h06m50s	BENCH_128.fastq isaac_25			50132	Free
1457	Completed in 00h08m36s	BENCH_64.fastq Isaac_25			82271	Free
1456	Completed in 00h12m28s	BENCH_32.fastq isaac_25			124164	Free
1455	Completed in 00h17m34s	BENCH_16.fastq isaac_25			196299	Free
1454	Completed in 00h29m16s	BENCH_8.fastq isaac_25			286552	Free
1453	Completed in 00h50m50s	BENCH_4.fastq isaac_25			440512	Free
1452	Completed in 00h07m09s	BENCH_128.fastq isaac_10			50132	Free
1451	Completed in 00h07m40s	BENCH_64.fastq Isaac_10			82271	Free
1450	Completed in 00h12m08s	BENCH_32.fastq isaac_10			124163	Free
1449	Completed in 00h19m02s	BENCH_16.fastq Isaac_10			196301	Free
1448	Completed in 00h27m37s	BENCH_8.fastq isaac_10			286550	Free
1447	Completed in 00h52m28s	BENCH_4.fastq isaac_10			440512	Free
1446	Completed in 00h05m15s	BENCH_128.fastq isaac_5			50132	Free
1445	Completed in 00h07m31s	BENCH_64.fastq Isaac_5			82272	Free
1444	Completed in 00h10m38s	BENCH_32.fastq isaac_5			124163	Free
1443	Completed in 00h17m27s	BENCH_16.fastq Isaac_5			196303	Free
1442	Completed in 00h32m58s	BENCH_8.fastq isaac_5			286554	Free

Standardized Modeling and runtime environment for analysis pipelines

- Control center for processing of raw DNA data, such as FASTQ, SAM, and VCF
- Personal user profile guarantees privacy of uploaded and processed data
- Supports reproducible research process by storing all relevant process parameters
- Implements prioritized data processing and fair use, e.g. per department or per institute
- Supports additional service, such as data annotations, billing, and sharing for all Analyze Genomes services
- Honored by the 2014 European Life Science Award

Hasso

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Interactive Genome Browser

Matching of genetic variants
and relevant annotations

- Genome Browser enables interactive comparison of multiple genomes
- Combined knowledge by integrating latest international annotations and literature, e.g. from NCBI, dbSNP, and UCSC
- Detailed exploration of genome locations and existing associations
- Ranked variants, e.g. accordingly to known diseases
- Links always back to primary data sources to guarantee Analysis turns Big Medical Data into Precision Medicine?
 - Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

How Real-time

Analysis of Patient Cohorts

Fast clustering directly performed within the inmemory database

- In a patient cohort, a subset does not respond to therapy – why?
- Clustering using various statistical algorithms, such as k-means or hierarchical clustering
- Calculation of all locus combinations in which at least 5% of all TCGA participants have mutations: 200ms for top 20 combinations
- Individual clusters are calculated in parallel directly within the database
- K-means algorithm: 50ms (PAL) vs. 500ms (R)

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Oncolyzer

Unified access to formerly disjoint oncological data sources

Flexible analysis on patient's longitudinal data

- Research initiative for exchanging relevant tumor data to improve personalized treatment
- Real-time analysis of tumor data in seconds instead of hours
- Information available at your fingertips: Inmemory technology on mobile devices, e.g. iPad
- Interdisciplinary cooperation between clinicians, clinical researchers, and software engineers
- Honored with the 2012 Innovation Award of the German Capitol Region

 $\leq \Lambda$

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Oncolyzer Patient Details Screen

- Combines patient's longitudinal time series data with individual analysis results
- Real-time analysis across hospital-wide data using always latest data when details screen is accessed
- http://epic.hpi.unipotsdam.de/Home/ HanaOncolyzer

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Oncolyzer Patient Analysis Screen

- Allows real-time analysis on complete patient cohort
- Supports identification of clinical trial participants based on their individual anamnesis
- Flexible filters and various chart types allow graphical exploration of data on mobile devices

Analysefunktion	
Überlebensstatus Anzahl der Typion Details für Patient wählen	
Malte Mustermann	: 71 bis 80
	Ungefiltert: 4255 Gefiltert: 1
	Überlebensstattion Details für Patient wählen

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Drug Response Analysis Data Sources and Matching

Drug Response Analysis Interactive Data Exploration

correlations between drugs

- Drug response depends on individual genetic variants of tumors
- Challenge: Identification of relevant genetic variants and their impact on drug response is a ongoing research activity, e.g. Xenograft models
- Exploration of experiment results is timeconsuming and Excel-driven
- In-memory technology enables interactive Interactive analysis of exploration of experiment data to leverage new scientific insights and genetic variants

ဓဝဝို CHARITÉ

How Real-time **Analysis turns Big** Medical Data into **Precision Medicine?**

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Interactive Clinical Trial Recruitment

- Switch from trial-centric to patient-centric clinical trials
- Real-time matching and clustering of patients and clinical trial inclusion/exclusion criteria
- No manual pre-screening of patients for months: In-memory technology enables interactive prescreening process
- Reassessment of already screened or already participating patient reduces recruitment costs

cytolon

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Join us for upcoming projects!

What to take home? Test-drive it yourself: http://we.AnalyzeGenomes.com

- Identify relevant clinical trials and medical experts
- Start most appropriate therapy as early as possible
- For clinicians

- Preventive diagnostics to identify risk patients early
- Indicate pharmacokinetic correlations
- Scan for similar patient cases, e.g. to evaluate therapy

For researchers

- Enable real-time analysis of medical data and its assessment, e.g. assess pathways to identify impact of detected variants
- Combined free-text search in publications, diagnosis, and EMR data, i.e. structured and unstructured data

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

Keep in contact with us after returning from Rome

Dr. Matthieu-P. Schapranow schapranow@hpi.de http://we.analyzegenomes.com/

Hasso Plattner Institute Enterprise Platform & Integration Concepts (EPIC) Program Manager E-Health Dr. Matthieu-P. Schapranow August-Bebel-Str. 88

How Real-time Analysis turns Big Medical Data into Precision Medicine?

Dr. Schapranow, GLOBAL HEALTH, Aug 27, 2014

35

14482 Potsdam, Germany