Runtime Systems and Behavioural
Abstractions

Wolf Zimmermann

Martin-Luther-University Halle-Wittenberg

Wolf Zimmermann 0

1. Introduction

Idea of Protocol Conformance Checking

@ Let S be a service with an interface providing services ¥ and protocol P

@ Let C be a context using S

= Model behaviour of C as a rewrite system U specifying the set L(U) of
sequences of service calls to S

@ Check whether L(C) C L(S)

@ If the answer is no, present a sequence o € L(C) \ L(S).

1= should be automatically constructed from C.

Context C v Service S

Abstract _90_

Behaviour U Protocol P
L(U)S L(P)

To Do

@ Runtime systems

@ Concepts of Abstraction

w= also used for Software Model Checkings (is it possible to avoid undesired
situations?)

Wolf Zimmermann 2

Contents

Objectives

@ Understanding the Principles of Runtime Systems

©00000

Understanding the Principles Abstraction
Understanding the Principles of Software Model Checkibng

Understanding the use of Rewrite Systems for Abstractions

Introduction
While-Languages
Procedures
Concurrency
Synchronization
Summary

Wolf Zimmermann 1

2. While Languages

Our Example Language

(Prog)

(While)

(Block)

— { (Decls)(Stats)} A program is executes its declarations followed by executing
its statements.

— ({Decl);)* Declarations are executed in its order

— (type) identifier Allocates a variable of the type

— int (const) integers of a given size

— ((Stat))* Statements are executed in its order

— (Assign)|{If)|{While)|{Block)

— identifier=(Expr); The value of the RHS is stored at the variable at the LHS
— if ((expr)) (Stat) else (Stat)

If the value of the condition is # 0 the first statement is executed.

Otherwise the first statement is executed

— while ((expr)) (Stat)

The statement is executed while the value of the condition is # 0

— { (Stats)} The execution of a block executes its statement

@ Integers are represented by 2-complement and can be coerced to integer of larger sizes

@ Expressions are evaluated as usual (without overflows or underflows). The program execution
aborts if a division by zero happens.

@ The value of variable res is the output, the initial values of the other variables are the input

Wolf Zimmermann 3

Q =2{(gi,xy,r):0<i<9,-8<x,y,r<7}
{ int x(4); I 2{(qo0,x,y,r): =8 < x,y,r <7}
int y(4); F £{(g0,xy,r): —8<x,y,r <7}
int res(4); R 2 {(q0,%y,r) = (q1,%,y,r):0<x,y<7,-8<r<T7}
Go: if (0&EY>0) { U {(qo,x,y.r) — (qe,xy,r): —8< x,y <0,~8<r< T}
q1: res=0; U {(q1,x,y,r) = (q2,x,y,0) : =8 < x,y <7,-8<r <7}
@ while (x!=y) U {(q2.xy.r) = (@3.xy,r): —8<x,y<T,x#y,~8<r<T}
g it Goy) U {(q2.xy.r) = (g6, y,r): -8 <x,y <T,x=y,~8<r<T7}
qa : X=X-Y; U {(g3,x,y,r) = {(qa,x,y,r): =8<y<x<7,-8<r<T7}
Gs else y=y-x; U {(a3,xy,r) = {(gs,x,y,r): 8<x<y<7,-8<r<T7}
Qs : Tes=x; U {(g,xy,r) = (@2,x—y,y,r): —8<x,y<T,x#y,-8<r<T7}
qr: } U {(gs,x,y,r) = (a2, x,y =x,r): =8 <x,y <7, x#y, -8 < r <7}
gs: else res=-1; U {(gs,xy,r) = (97, %,y,x): =8 < x,y <7,-8< r <7}
Qo - U {(a7,%,y,r) = (90, %, y,r) : =8 < x,y <7,-8 < r <7}
U {(g8,%y,r) = (qo,x,y,—1): =8 < x,y <7,-8<r <7}
Wolf Zimmermann 4

Example 1: A While-Program

Discussion

Observations

Program semantics of while-programs can be represented as a finite state machine, if
all data types are finite types

Holds for all programs without procedures, concurrency, exceptions

However, number of states is horribly large (state explosion problem)

Software Model Checking

Does the finite state machine A defining the program semantics satisfy a certain property?

o
o
=
=
o
i
=
o

Let G be the graph representation for A.
Is the final state always being reached?
Is G acyclic?

If not the program may not terminate.
Can the final state be reached?

> Is there a path from an initial state to a final state in G?

If not, the program never terminates.

Other properties ¢ can be checked by jumps:

: -+ //property ¢ must hold
cif (—p) goto g

/ Te e e

Q Qo

Is there a path from the initial state to g'?

Wolf Zimmermann 5

Principles for Construction of Finite State Machines

@ For each statement and block end there is a program point
o State £ values of variables and program point

@ State transition rules formally define the semantics of the
statement

@ Execution according to the execution order
@ Several initial states (for each value of variable)

@ Possible alphabet could be the statements (here not
considered)

o Final state is the state at the block end of the program

Wolf Zimmermann 5

Abstraction

Objective
Reduce the number of states

Idea

Define a finite state machine A £ (Q’,/’, F',—') such that |Q'| < |Q| and
there is mapping o : @ — Q' satisfying the following properties:

@ a(l) C I and a(F) C o(F')

a(q) —— a(d)

@ If g — § then a(q) — a(a):aT a

Y

q _—

Wolf Zimmermann 6

Example 2: Abstraction of the FSM in Example 1
{ int x(4);
int y(4); ‘@
int res(4);
(9—=(19—=(22—=(1)

qo: if (x>0&&y>0) {
q»: while (x!=y) (4g—>{do]—() Tas)

gs : if (x>y)

qa: X=Xy, Observation: Graph representation has cycles?

as : eise y=YTXS = According to the abstraction the answer to termination is no?
e o resEx; (false negative)

qr - } @ Without the loop, the answer would still be correct.

qs : else res=-1; . . . o
qo i} Reason: There are more paths in the abstraction than in the original

finite state machine

= Negative answers to questions to the absence of path
properties may be false
= Positive answers to the absence of path properties are still
correct
Q" = {qo,.., a0}
a: @ — Q is defined by a(qi,x,y,r) 2 g, 0<i<9,-8<x,y,r,<7
F' £ {qo} and I £ {qo}
R’ £ { do — q1,90 — g8, q1 — G2,q2 — G3,q2 — (g6, 43 — G4, q3 — (5,
Gs — 2,45 — G2, G6 — G7,q7 — {9, Gs — Go}

Wolf Zimmermann 7

Example 3: Protocol Conformance Checking

Component A
L=(f,g,h}

h(flg) h L(Py)=h"(f"g)"h
o——— L(Py) =g

® L(U) = L(h(flg)"h) € L(h"(f"g)"h") = L(P1)
@ hffh € L(U)\ L(P2) = Protocol Violation

Wolf Zimmermann 9

Discussion
@ Abstraction may increase feasability of model checking
@ However, the price to pay are false negatives
@ Application to protocol conformance checking:
s Service §
Protocol P
L(U)S L(P)
o Let ¥ be the alpabet of the finite state machine U specifying
the behaviour of C .
o For a service call g : A.f(---); ¢’ : add a transition g — ¢’
= We write g £ q’ instead of gf — ¢’
= L(U) is a superset of the sequence of service calls being
executed
= Protocol conformance checking L(U) C L(P) for two finite
state machines
1= False negative are possible because of abstraction.
Wolf Zimmermann 8

2. Procedures

Objectives

Add procedures to the while language:

Prog) — (Decls)*(Proc)*{(Decls)(Stats)
Proc) — (type) identifier (((Pars)|\))
Pars) — (Par)(,{Par))*

(
(
(
(Par) — (type) identifier
(
(
(

—_~—

(Decls)(Stats) }

o~~~ o~

Stat) — ---|(Call)|{Ret)

Cally — identifier (((Args)|A\));
Ret) — return ({Expr|\));

(Args) — (Expr)(, (Expr))*

@ A procedure with return type void£int (0) is called proper.

@ Any other procedure is called a function.

@ A procedure call allocates the parameters and local variables, passes the
arguments by value to the corresponding parameters, and then executes the
statements.

@ A function call allocates in addition a return parameter. This must be last
argument in a function call which must be a variable.

@ If a return statement is being executed then the execution continues with the
statement after the corresponding call.

@ In case of a function, the return statement must have an expression. Its value is
stored at the last argument.

Wolf Zimmermann 10

Example 5: Procedure Calls Discussion

void £(int(4) 1) { [(gosn] Q ={z}
int(4) j; e B £ Ob ti
int 1.0 z} servations
@ Il EZ 21; Fo2{z : : .
g3 : if (%<O) (11>3:2) S 2{(g.k):i€f{0,1},-8<k<T} @ Semantics defines a pushdown machine
: return; qg > s AN » A - .
gg L else g(i); ﬁ Li{(‘flmld) : 2f§ h<11,-8<ij<T7} @ Only 1 state but a huge stack alphabet: |S| =2-2* +10-2%.2* = 2502
-} R = {(qo,k)z — (q1,k)(q2, k,j)z: =8 < k,j < 7} (for 32-bit integers |S| ~ 1.8 - 10%°)
void g(int i) { U 92,i,j)z = (q3,i,i —1)z: =8 < i,j <7} L.)
int j; U @, i, 1)z — (qa, ,-’jgz 128<i<7,-8<j<0} @ The language accepted by the pushdown machine is the possible sequence
g7 j=i-1; U 93, i,j)z — (gs5,i,j)z : =8 < i <7,0<j <7} of calls to f and g: L(f((fg)*|f(gf)*))
gs: if (j<0) U Qa,i,j)z —> Az —-8<i,j<T}
go: return; U {(gs,7,0)z = (6, 1:)(g3,, h)z : =8 < i, j,h < 7} Problems
qo: else £(j); U Ge,i,j)z = Az:—8<i,j<7 .
qi1 i} U qr,0,J)z — (qs,i,i —1)z: —8<i,j <7} @ How to model global variables?
{int(4) k; U Gs,i,j)z — (qo,i,j)z: —8<i<7,-8<j<0} . i -
qgo: £(k); u qs,i,j)z — (quo,i,j)z: =8 < i<7,0< <7} @ How to avoid the artifical state’
@} U lae,if)z = Az: =8 < j< 7} Global Variables xi, . . ., x,
U q10,i,j)z = (qu1,1,j)(q2,j, M)z : =8 < i, j,h <7 .
U ﬂqif, ,',j;z N (Az“ 78)£ ,g,_,' 3)7} } Idea: Include them into a global state.
Y . —b; _ b; . N]
@ The state of the caller must be remembered ° Q= {(X17 s 7X") xi €2 < x; < 27 where int (b)) is the type of X’}
@ The callee starts its execution with the first statement @ Replaces the artificial state z
= Behaves as a stack . . .
= Runtime systems maintains call stack @ There is only one global state, if the program has no global variables: ()
@ Transition rules should only be applied to the top of stack elements
@ Introduce a new state z
Wolf Zimmermann 12
Wolf Zimmermann 11
Example 5: Procedure Calls and Global Variables Discussion
int(4) k; 2{(k): —8< k<7 :
void f(iint(4) i) { ,Q 2 gk; _g< k< 7% Observations
int(4) j; 2 S
gz : i;lziéo) { g N gk) x)_-8i§e ’10317}2 11,12}, -8 < x < 7} @ Program semantics of while-programs with procedures and global variables can be
gs : lfzﬁ)i J{(;;::i,jj 13<h<10,-8<i,j<7} represented as a pushdown machine, if all data types are finite types
Z? : ng) ; R 2 qo, r)(k R q1,r)(q3, k, j)(k) : =8 < k,j,r < z} = Holds for all programs without concurrency, exceptions
Jot Lise xmket; 8 glv ;i%ig - 522)’ k (é‘)<3 k_é % ’;}f <7} @ However, number of states and the size of the stack alphabet is horribly large (state
. 2, — :—8< k,r< .
q10 voidkg(int(@ 0 { 8 @i t — (qa, 7,:_k1) k)8; <—8§ :,j,lé§7_}k -7 explosion problem)
qi1 - =k+1i; qa,1,J —\qs,1,J rmox I U, -0y K S .
R S e TR (01 IR ER | BRSPS Ay ML Software Model Checking
in res; T o . o . - . . .
qo: f(k); | (46,10 | U %quﬁ :,Jggkg £ éqﬁ7 I,J;E(B J,h) (k) : =8 <, j,h,k <T} Does the pushdown machine A defining the program semantics satisfy a certain property?
: =k; i, J i J — —8< . .
2,2; } res (g5 2.1) Y NS k e an i k :,l) 8 "J’,k,g 7} @ Is the final state always being reached?
(25,3.2) U {(q7,i,5)(k) = (gs,i,j)(qu1,j)(k) : =8 < i,j, k < 7})
) U as,i,j)(k) — qlo’l'd';gk Z1) i -8<T,j k< 7{ = If not, the program may not terminate.
U g9, 1, J)(k) = (10,7, j)(k +1) 1 =8 < i, j, k <7 @ Can the final state be reached?
U G10,1,J)(k) — (k) : =8 <i,j, k <7} .
U Q11,{;§k — Ethz,i (k+1i):—8<i k<T} = If not, the program never terminates.
U q12,i)(k) — (k) : =8 < i,k <7} @ Other properties ¢ can be checked by jumps:
g:--- //property © must hold
@ Semantics is a pushdown machine I q:if (//—|<p) gotﬁ q
@ The language accepted is the set of sequences on calls on f and g q' R
LMy ={f"*g":neN} = Is there a path from the initial state to q'?
w= [() is not a regular language, but it is context-free
Wolf Zimmermann 14

Wolf Zimmermann 13

Abstraction

Objectives

@ Reduce the number of states
@ Reduce the size of the stack alphabet
Idea
Let A =2 (T,QR,I,F,S,5) Define a pushdown machine A" £

(T, Q,R',I'F',S', s5) such that |Q'| < |Q|, |S’| < |S and there are mappings
a:Q— Q, 3:5 — S satisfying the following properties:

@ a(l) C I and a(F) C o(F')
o If sg> 5§ €R, ae TU{N} then 5°(s)a(q) > &4 € R
B (s)alq) —— B(8)a(d)

ws] ws]
sq

a A A
< 5§

where 3* : S* — S'" is defined by 8*(s1---s5) = B(s1) - - - B(sn)

Wolf Zimmermann 15

Getting Rid of the State z in context-free system [1

f f
R'£{qo— q5.91,91 — G2,G2 — €,q3 — qa, G4 — G5, 05 — 3.6, 96 — 7,
q7 — q11-98,498 — 410,99 — 410,910 — &, q11 — q12,q12 — 5}

Other Definition of a Derivation Relation

@ Make concatenation explicit by the operator . and let stack grow from right to left
@ Specify the derivation relation = by inference rules:

u—veEeR uzv v w

us=v.s vy uZw
@ L(MN)E{xecT*:qy>¢}

f f f
do = G3.91 = q4.91 = g5.91 = G3.96-91 = q4.96.91 = 45.96-91 = 43.96-96-91 = q4-96-96-91

= Qg5.96-96-91 = q3.96-96-96-91 = q4.96-96-96-91 = 49-96-96-96-91 = q10-96-96-96-91 = d6-96-96-91
= q7-96-96-91 g11-98-96-96-91 = q12-98-96-96-91 = g8-96-96-91 = q10-96-96-91 = q6-96-q1
= q7-96-q1 =S q11-98-96-91 = q12-98-96-91 = q8-96-91 = q10-96-91 = G6-91 = q7-q1 LS gi1-98-q1

= q12.98-q1 = g8-q1 = q1 = q2 = €

Wolf Zimmermann 17

Example 5: Abstraction of a Pushdown Machine

int(4) k; f f,
void f(int(4) i) { qoZz = q193Z = q194Z = q195Z = q196G3Z = q1G6G4+Z
- i.ggf‘ll? 3s = 196952 = G196G693Z = q1G696G4Z = G19696952
@ dr s { = 1969696932 = 1969696942 = 14696964992 = G1G69696910Z
gg iiﬂii, = 414696962 = 14696472 = q1069698G11Z = q106q698d122
q7: g(3); = q1969698Z = 4196969102 = q19696Z = 4196972 £ q19698q112
gg : Llse kektl: = q19698912Z = q19698Z = q196910Z = q196Z = q197Z
Q10.2 ’ gd198q11Z = q1498q12Z = q198Z = q1q10Z = Q1Z = Q2Z = Z
void g(int(4) i) { Observations: Let A’ be the abstraction of the pushdown
qu1 :, k=kH; } machine A defining the semantics
o | D o o iMigg < L(A)
g1 . res=k; @ In this case it holds even L(A) = L(A")
q: } @ In general, it holds L(A) C L(A")
Q4{z} 54 {qu .., q12} @ There is only one state

g SQ:SQ//’Q((I()) =z Remark: A pushdown machine with one state is called a
B((qi, x)) £ 9 ie{0,1,2,11,12} context-free system
B(qi,x,¥)) = qi,i € {3,...,10}

f f
R £ { qoz = q1432,q12 — G227, G2z — Z,G3Z — 42, GaZ — G52,q4Z — GoZ,G5Z — G6q3Z,

d6Z — qrZ,qrZ — q8q11Z,qsZ — q10Z, Q9Z — q10Z,q10Z — Z,q11Z — q12Z,
q12z — z

Wolf Zimmermann 16

Getting Rid of the State z in context-free system [1

Observation

The single state z is only be needed to avoid that the rewrite system
changes stack symbols other than the top of the stack.
o Without z, Example 5 would allow the following derivation:
qo = q193 = G243 = 3 = g4 = q9 = q10 = €
== |t is necessary to introduce a empty string € on the stack
alphabet in order to distinguish it from A (the empty string
over the terminal symbols)
= Change derivation relation such that only top of stack
elements are considered

Wolf Zimmermann 18

Disci

1ssion

@ Abstraction may increase feasability of model checking

@ However, the price to pay are false negatives

@ Application to protocol conformance checking:

Context C 5 Service S

Abstract ———=0—

Behaviour U Protocol P
L(U)S L(P)

o Let ¥ be the alpabet of the pushdown machine U specifying
the behaviour of C
o For a service call g: A.f(---); ¢’ : add a transition ¢ LA q
e Internal procedure calls are not labelled with the procedure
name
1z We write g LA q’ instead of gf — ¢’
= L(U) is a superset of the sequence of service calls being
executed
= Protocol conformance checking L(U) C L(P) where L(U) is a
context-free language and L(P) a regular language
= False negatives are possible because of abstraction.

Wolf Zimmermann 18

Example 6: Asynchronous vs. Synchronous Procedures

o @Recursive Programs: Behaviour can be modeled by pushdown machines

@ We only consider control-flow
=- Stack frames contain program points
= State (stack) is a sequence of program points

Recursive and Concurrent Programs:

. q q
@ State is a cactus stack [e] qz
= State transitions transform cactus stacks into cactus stacks . o
void main() { async void b() { T %
qo: aQ); gs: b();
g1: return; ge: cQ); =
g7: return 94

sync void a() {

g2: b();
gs: cQ);
da: return:

Conclusions

snye void <O L (g || (a5 | (aw-a7) I a3)-00-7) I (a5 || G5)-99-08))-1
da: retl’lrn

@ Any top of stack elements can perform state transition in any order (interleaving
semantics

@ A cactus stack k can be represented as a process-algebraic expression

=- Behaviour of recursive and concurrent programs can be modeled by Process Rewrite
Systems

Wolf Zimmermann 20

3. Concurrency

Asynchronous vs. Synchronous Procedures

Synchronous Procedures: Usual procedure execution

@ Callee starts with its execution
@ Caller waits until callee has been completed and returns
Aynchronous Procedures: @ Callee starts with its execution
Caller continues its execution concurrently to the callee

There is no synchronization except that the procedure contain the
asynchronous procedure call only can return if the callee has been
completed.

Problem
A stack cannot model the runtime behaviour of concurrent execution.

Remark

In the following, we abstract from the variable values and only consider
the resulting abstract semantics.

Wolf Zimmermann 19

Modelling Asynchronous Procedure Calls

Transition Rules

asynchronous [7]]

procedure call ﬂ A ﬂ q Lq Il ¢
(internal) —_— 1 2193
asynchronous 71 m 73 m
procedure call [— — 41 —= 421l 93
external >

Interleaving Semantics
Any applicable transitions rules can be executed in any order

a a
u=v u=v
Inference Rules:

U||W:a>VHW WHU:a>WHV

Returning From Asynchronous Procedures: ¢ — Aand q|le=¢c| g=g¢q

Wolf Zimmermann 21

Modelling Semantics for Synchronous and
Asynchronous Procedures

Transition Rules for Abstract Service Semantics

@ Rewrite rules should include the names of services

= Process rewrite rules
hy

g —qj internal transition to next instruction

9 = q-qj internal procedure call (.qk is first instruction)
g 7 99« call of synchronous service a

g —¢€ return from procedure/service

A .

gi > qx|l g internal call of asychronous procedure
a .

gi — q; || gk call of asynchronous service a

Process Rewrite Systems (Mayr 1997)

Tuple M2 (Q, X, 1, —, F) where
@ Q is a finite set atomic processes (Here: program points of all components),
¥ finite alphabet(Here: names of all services),
I € Q initial process(Here: start of program execution),
F C PEXPR(Q) Menge final Processes (Here: ¢),
finite relation —C PEXPR(Q) x (X W {\}) x PEXPR(Q) (process rewrite rules),
denoted as e 2 ¢’

Wolf Zimmermann 22

Discussion

@ LHS of process rewrite rules are either atomic or have the
form q || ¢’ where g and ¢’ are atomic

@ ¢ is the identity of the sequentialn and the parallel operator

@ If no parallel operator is used in the PRS, then the PRS
corresponds to a pushdown system

@ IF the LHS as well as the RHS of the process rewrite rules are
atomic then the PRS corresponds to a finite state machine.

e L(IM) contains all interleavings of asynchronous executions.
@ Abstraction from programs to PRS can be mechanized.

@ Checking conformance to a protocol p can be reduced to

L < L(p)

Wolf Zimmermann 24

Application of Process Rewrite Rules

,T| Process Rewrite Rules can only be applied to a top
t g stack frame of the cactus stack
£ Direct Derivation:
[o] :a’>§ PEXPR(Q) x (X W {A}) x PEXPR(Q) ist
% J defined by
T o q,-ivel'l usv usv
t 9o qi > v uw2vw ullwv|w
94 u :a> v
d1 3
wllu=wlv

Derivation: =€ PEXPR(Q) x £* x PEXPR(Q)

defined by:
uSv v3w
A xa q
u=u u w

(as || ((as Il (g8-q7) I 93)-q9-7) I (g5 [| 93)-g9.G4))-q1

Wolf Zimmermann 23

4. Synchronization

Synchronization Statement sync f;

The execution of the synchronization statement sync f; continues
only, if the previously called asynchronous procedure f has been
completed.

Abstract Semantics

Let
@ g; : sync f; be a synchronization statement,
@ gj4+1 be the program point afte g;,

@ and g; be any program point of a return statement in f or the
last program point of £.

= qi || gj — qi+1 is an abstract semantics of the synchronization
statement

Wolf Zimmermann 25

5. Summary

Classification of the Transition Rules within Service Implementations

:}ﬁ:ggfms 1 91] A 192 class (1,1) procedure |1 A class (1,1)
procedure call —_— 2 return —_— ¢ A
procedur return 91— 49 ! €
synchronous 192 | 15 forking by - m - class (1,P)
procedure call P class (1,5) asynchronous @ P
within a service [A 193] A procedure call |21 m | 43 ﬂ |
— @S dpngy o dtomal —_— 94— g2l 93
B
;¥2§253?§i2u 7] 2] class (1,9) forking by A class (1,P)
to external il m s m asynchronous |1 A 193] 2
service —_— 41— 92" 43 procedure call —_— 91— q2ll g3
within a service
class (P,1) abortionof g7 class (S,1)
2 — procedure with — 2 —
synchronization —_— 2 all & L a exception i & Y
ded2— 43
Wolf Zimmermann 76

Decidability Results

Theorem 1 (Reachability (Mayr 1997))
For PRS N = (Q,%,/,=, F) it is decidable

@ whether | = u
@ wether x € L(IM), or whether L(MN) =

Theorem 2 (LTL-Model Checking (Mayr 1997))
Let ¢ be a propositional LTL-formula defining a language L(p) C L.

@ For (1,1)-PRS, (1,5)-PRS,(1, P)-PRS, (S, S)-PRS and (P, P)-PRS it is
decidable whether L(N) C L(yp)

@ For (1, G)-PRS, (S, G)-PRS, (P, G)-PRS and (G, G)-PRS it is

undecidable whether L(I) C L(yp)

Corollary (Protocol Conformance Checking)

For (1, G)-PRS, (S, G), (P, G)-PRS and (G, G)-PRS M and a regular language
L it is undecidable whether L(I) C L

Wolf Zimmermann

28

The Hierarchy on Process Rewrite Systems

(x,y)-PRS: @ Each LHS belongs to x
@ Each RHS belongs to y

@ Class G if both S and P are allowed for x or y

@ Yields a hierarchy with well-known correspondences
(Mayr 1997)

@ Correspondence to Programming Language Concepts
(Both, Zimmermann, Franke, Heike (2010,2012))

exceptions
synchronizatiol

procedures
concurrency

procedures

synchronization

concurrency
st| (S.9) | | (1,G) | | (P,P) |Petri—Nets
concurrency

procedures

oncurrenc synchronization

exceptions procedures

CFS BPP

procedures concurrency

nothing

Wolf Zimmermann 27

	Inhalt

