Big Data: Inside the Managing Process

Petre DINI

Concordia University, Canada

China Space Agency Center, China

petre@iaria.org

Petre DINI

Plan

- Big/small/linked/open data
- Data collection/filtering/storing
- Data retrieval/selection/interpretation
- Domains
- Case Study
- To come

Where to start from?

- For existing systems; mostly, non-standard approaches
- - forensic
- facial recognition
- atmospheric models
- universe models
- health records
- human behavioral models
- etc.
- For new systems; must be standard
- syntax
- semantic
- taxonomy

Data/Support types

- Data representation

 A la SQL
 Non-SQL
 Pictures
 Voice
- Support digital (memory)
 Support digital (tapes) Pros/cons
 (Google story!)

Data correlation

- Hierarchical data
- Distributed/Isolated, Linked data
- Web / Deep Web [:) internet profunda!]
 Invisible Web, Dark Web, Hidden Web [not indexed]
- Data features
 Primary [P]
 Secondary [S]

D :: = {[P] [S] [context]}

BIG

Volume

- Complexity, Security, Risks to privacy
- Complex links, (fuzzy links, context-based links)
- Mixed Formal/Informal features
 - ⇔ defined fields (syntax) / text-like information

Note:

- 90% of world's data was generated in the last two years
- > 90% is unstructured
- + Web ad Cloud offer new possibilities for discovery
- \Rightarrow New technologies:
 - For extracting/transforming/loading (ETL) and processing
 - For cleaning and organizing unstructured data in big-data applications; e.g., Hadoop

Mixed media support

Source

- Sensors
- System [any] reports
- Neural/body systems
- Atmospheric measurements [short, medium, long terms]

Petre DIN

- Universe observations [long term]
- Health measurements [small + big,...]
- Social measurements [migrations, resources, etc.]

collection Raw Partially processed

Retrieval

- Clustering
- Partitioning
- Summarizing
- Fusion
- Compressing
- ? selecting the right features

Bumps

- Noise
- Probabilistic data
- Fuzzy-data sets
- Incompleteness
- Time-sensitive
- Time-free
- Timestamps
- Hierarchical timestamps
- Timestamps: [source][storage][processor][console]

Petre DINI

? Clock synchronization

Storage

- Distributed
- Access
 Internet Neutrality

Accessibility

Transparency Degree
 Open [e-government]
 OpenData Government
 OpenData Forum
 Private [financial, health]

Petre DINI

10

Status

- Yesterday
- Today
- Tomorrow
- #1: big data exist
- #2: big data was dealt with

? → classical "hype" case

11

Applications i [SMALL data]

- Using Patient Data for Personalized Cancer Treatments
 - improve health outcomes
 - support development of new therapies
- Small Data

Seeking personalized data-derived insights form analysis of our digital traces

Personal devices Internet services for self-tracking

Fitbit

Patients like me

http://quatifiedself.com

Digital traces accumulated by social networks, search engines, mobile operators, online games, e-commerce

Applications ii [SMALL data]

? → regulatory challenges /FDA, HIPAA, privacy policies

Health Insurance Portability and Accountability Act

- Open mHealth <u>http://openmhealth.org</u>
- http://smalldata.tech.cronell.edu

Application i [BIG data, bug traces]

- Large-scale bug traces
- Testing network devices before releasing them
- Binary/Linear Downsizing -> Downsizing Ratio
- Reproducing failures to facilitate the debugging process, real-world traffic needs to be captured and later replayed
- → high volume [peak-hour, at Beta Site, 20Gbytes, 30 minutes]
- Remove data redundancy in large a trace
- Note
- Linear Downsizing: rollback-and-reply; whenever a failure is triggered, the failure would be logged and the sequential traces triggering the failure are regarded as a whole and divided into equal-sized pieces of traces from the beginning based on a predefined size, rollback size.
- Binary Downsizing: BD locates the sequential traces triggering the failure by recursively splitting the traces on halves and replying the smaller ones in turn, until the failure is missed....

14

Applications ii [BIG Data]

- Government Sector
- Ref: Communications ACM, 03/2104, vol. 57, no. 03
- BIG Data initiatives
- Japan: ITS [Intelligent Traffic System], Info-plosion, MEXT/NSF [Education..]/NSF
- UK: HSC [Horizon Scanning Center]
- Singapore: RAHS [Risk Assessment and Horizon Scanning]
- Korea: KOBIC, MFAFF, MOPAS
- EU: DOME [The Netherlands, Switzerland, UK, + 17 countries] + IBM /supercomputing center to handle a data set in excess of one exabyte per day derived from SKA radio telescope

Exascale computing, transport and storage

Analyze all raw data collected daily (observable universe)

(One exaflops is a thousand petaflops or a <u>quintillion</u>, 1018, floating point operations per second.) At a <u>supercomputing</u> conference in 2009, <u>Computerworld</u> projected exascale implementation by 2018

 US: Genome Data on AWS [Amazon Web Services], CDC, NSF/NIH: BIGDATA, US Michigan [Statewide Data Warehouse]

Applications iii [BIG data]

- Local Governments
- 2011, Syracuse (NY) + IBM → Smarter City

Bid data to help predict and prevent vacant residential properties

To provide a single source of information about citizens of Michigan to multiple government agencies and organizations to help provide better services

Facts

- ? E-Coli story
- ? Driver License story

Case study

Positioning

Issues

- Event definition
- Event transport
- Event processing
- Business-driven events

17

Positioning

- Layered event process architecture
 - Issuing events
 - Processing events
 - ? Performance
- Information bus
 - Publishing events
 - Subscribing to events
 - ? Access/ transport
- Towards autonomic event processing
 - Network smartness vs. network management

Get the infrastructure behavior

Petre DIN

Information

19

Event

- Act (pre-emptive, proactive, reactive,...)
- Correlate (diagnostic, troubleshooting, impact, root cause, ...)
- Get status (push/poll)

All operations can be policy-driven - top-down

- bottom-up

SEVILLE

Bottom-up vs. Top-down

- Domain Manager enriches with domain information
- EMS enriches with multidevice information
- Notification Engine collects OS notifications

Third level (Domain Manager)

Second level (Element Manager)

> First Level (Mgd Elemt)

Petre DINI

Event
 Information +
 Device
 Information +
 Domain
 Information

Event Information + Device Information

> Event Information

> > 20

A Layered Processing View

Multi-level diagnostic

Communication Bus

BIG Data and Evolution of Network Manageability

Network Scale, Complexity, Availability

IPOM 2003 Kansas City

BIG Data and Evolution of Network Smartness

IPOM 2003 Kansas City

BID Data and Autonomic Computing

(a) Typical management control loop (b) Closed management control loop in autonomous network

Challenging Issues

Too Many

Syntax Issues

- Various formats
- Myriad of conversions needed
- Lack of syntax control

Syslog Message "Body" Format in the IOS

Semantic Issues

Naming Context-defined

Smart events

XML Tagging is Not Enough

Petre DINI

Timestamps issues

Format

- Clock-free event sources
- Sources-destination timestamps
- Delay tolerant networks
- Localizing processing Local synchronization Wide synchronization
 Reliable timestamps

Example: Syslog

[field1] % [field2] % [severity] % [priority]%[mnemonic] %[free form field]

Petre DIN

Well identified fields [timestamps] [facility] [severity] [priority] [mnemonic]

Free form field (the richest in semantic) [..English plain text..]

Field separator %

Issues

- Number of fields varies
- Value space of the fields is is not uniform/standardized
- Semantic of timestamps is not uniform/or not defined
- Mnemonic is not modeled
- The English text is only humanly readable/useful
- Automation is difficult due to the "natural language processing" needs

33

Things started to get fixed

- Syslog, SNMP/MIB: IETF
- Adaptive message format: IBM/Cisco
- Intrusion detection format: IETF
- Anomaly report format: OASIS
- Incident handling format: IETF
- NGN management : ITU-T [Focus group]

Still to answer...

- Concepts such utility-based computing, autonomic computing, diagnosis-in-the-box, diagnosis out-of-box, adaptable applications, self-adaptable applications, and reflexive environments require a new approach of formalizing events, architecting event-based systems, and integrating such systems.
- Additionally, GRID systems bring into the landscape the concept of intermittent and partial behavior related to resource sharing that may require a special semantic on SLA/QoS violation events.
- Events related to traffic patterns and the dynamics of performance and availability changes in such environments requires particular metrics and processing, as well [accounting, outage].
- Another hot area quite poorly covered in terms of eventrelated requirements is MPLS OAM and all aspects related to MPLS VPN.

ALL DATA

 The First International Conference on Big Data, Small Data, Linked Data and Open Data

• ALLDATA 2015

April 19 - 24, 2015 - Barcelona, Spain

http://www.iaria.org/conferences2015/ALLDATA15.html

ALLDATA 2015

BIG DATA

Big data foundations; Big data understanding (knowledge discovery, learning, consumer intelligence); Big data semantics, search and mining; Big data processing and transformations; Big data handling, simulation, visualization, modeling tools, and algorithms; Managing big data (large-scale, integration, etc.); Unknown in large Data Graphs; Reasoning on Big data; Big data analytics for prediction; Applications of Big data (health, financial, social, weather forecasting, etc.; Business-driven Big data; Big data and cloud technologies; Technologies handling Big data; High performance computing on Big data; Big data persistence and preservation; Big data protection, integrity and privacy; Big data toolkits

SMALL DATA

Social networking small data; Relationship between small data and big data; Statistics on Small data; Handling Small data sets; Predictive modeling methods for Small data sets; Small data sets versus Big Data sets; Small and incomplete data sets; Normality in Small data sets; Confidence intervals of small data sets; Causal discovery from Small data sets; Deep Web and Small data sets; Small datasets for benchmarking and testing; Validation and verification of regression in small data sets; Small data toolkits

LINKED DATA

RDF and Linked data; Deploying Linked data; Linked data and Big data; Linked data and Small data; Evolving the Web into a global data space via Linked data; Practical semantic Web via Linked data; Structured dynamics and Linked data sets; Quantifying the connectivity of a semantic Linked data; Query languages for Linked data; Access control and security for Linked data; Anomaly detection via Linked data; Semantics for Linked data; Enterprise internal data 'silos' and Linked data; Traditional knowledge base and Linked data; Knowledge management applications and Linked data

OPEN DATA

Open data structures and algorithms; Designing for Open data; Open data and Linked Open data; Open data government initiatives; Big Open data; Small Open data; Challenges in using Open data (maps, genomes, chemical compounds, medical data and practice, bioscience and biodiversity); Linked open data and Clouds; Private and public Open data; Culture for Open data or Open government data; Data access, analysis and manipulation of Open data; Open data languages for Open data; Legal aspects for Open data

Q&A

Thanks!