

10 Years of Ubiquity: Remaining Challenges

Dr. Andreas Merentitis

UBICOMM 2013

Is Virtualization a Solution for Real Problems in the Sensor / Internet of Things domain?

Does it offer the technological opportunity for disruptive development?

Is it required for further improvement in core areas?

Is it only supply based (technology push) or also demand base (technology pull)?

©2010 Solar Strategies Inc.

Motivation & Internet of Things

The Internet of Things is reaching maturity

- Estimated number of interconnected devices ~10 billion
- M2M communications are gaining momentum in the industrial domain (e.g., Smart grid)

The next wave in the evolution of the IoT is approaching

- Number of interconnected devices ~50-100 billion (est. CISCO)
 - Interoperability and **manageability of devices**
 - Sharing of sensor infrastructure for different applications
 - Exchange **relevant** information

Sensor Infrastructure Virtualization

- Can alleviate some of the manageability challenges
- Facilitates reusability of resources while meeting security requirements
- Paves the way for smarter sensors & analytics at the edge

Virtualization Layers

- Virtualization can be performed at many layers:
 - Here we focus on the sensor side
 - "Thin Virtualization" or "Embedded Hypervisors"
 - Some intelligence can be shared with or owned by other network elements
 - Relation to the sensor infrastructure is necessary

Virtual Sensor Networks

Trend: operational and security integration for efficiency and reusability

But: different requirements, different people

AGT INTERNATIONAL

Solution: the right information to the right person, VSNs logical separation

Towards the Next Evolution Wave in the IoT

Today and Tomorrow

UBICOMM 2013 : 10 years of ubiquity Remaining challenges

Porto 30.9.2014

Dr . Dominique Genoud Hesso//Valais Institute of information systems Switzerland

Ubiquitous Computing today's challenges

- Information transport and storage in reality : interoperability
- Knowledge extraction using ubiquitous networks
- The energy cost of ubiquity vs purpose
- Purpose of ubiquitous : humans among the machines

Internet of Things challenges : interoperability

Cloud Computing and IoT

out » players need an architecture that is:

- ⊙ Standardized
- Independent
- Adapted to any automation application
- Unified management/supervision interface

Knowledge extraction using ubiquitous networks

- Data \rightarrow Models \rightarrow knowledge
- Microgrid example

Production and consumption are not in sync

Chosen Concept : block optimisation (microgrid)

IARIA-Porto 2013

The energy cost of ubiquity vs purpose

Purpose of ubiquitous : humans among the machines

- What should be adopted \rightarrow comfort and help
- What might be rejected \rightarrow percieved as invasive
- Propose scenarii that can be accepted, pushed by humans
- Definition of new social rules and behaviour → human among machines
- Definition of new machines behaviour → machines among humans

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

Ubiquitous communication

Security in Smart city

Tewfiq EL MALIKI (tewfiq.elmaliki@hesge.ch) University of applied Sciences in Geneva Telecommunication LAB

Ubiquitous commputing, 2013

Ubiquitous computing

Definitions

Ubiquitous computing is the method of enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user

– Mark Weiser

Ubiquitous computing, or calm technology, is a paradigm shift where technology becomes virtually invisible in our lives.

-- Marcia Riley (Georgia Institute of Technology, Atlanta.)

filling the real world with computers

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

2013,

Transparent
 Interfaces :
 Hide their presence from user

 Awareness of Context(s):
 LOCATION and TIME are simple examples of context

Capture Experience :

To capture our day-to-day experience and make it available for future use.

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES Haute école du paysage, d'ingénierie et d'architecture de Genève

3

hepia

2013,

Toward ubiquitous computing in Smartcity

>Demographic trends that have already largely been determined will contribute to a substantial reshaping of the global landscape between now and 2050.

>Indeed, people will be far more concentrated in urban areas.

>by 2015, and for the first time in human history, the majority of the world's human population will live in cities.

➤According to UN projections, nearly two-thirds of the population of the developing world will live in cities by 2025. [11]

hepia

Haute école du pays-age, d'ingénierie et d'architecture de Genève 4

Ubiquitous communication Smartcity

Problems of Security in Smartcity

Networks are increasingly heterogeneous and dynamic

- Dynamic changing attacks
 Applications are unaware of what security mechanisms to use
- Key issue is energy (sensors)
- Network survivability
- Framework
- -> Critical to keep the overall security (Runtime changing context)

layered security solutions are inadequate and/or inefficient

Because of the following limitations [36]:

- Redundant Security Provisioning: systematic security at each layer consume more resource than necessary
- Non-adaptive Security Services: Because attacks on a dynamic network come from any layers and any protocols, a countermeasures scheme at only one layer is unlikely to guarantee security all the time.
- Power Inefficiency: energy efficiency must be addressed because it is a crucial issue in WSN. The power efficiency design cannot be addressed completely at any single layer in the networking stack.

7

architecture de Genève.

Solutions ?

New solutions are needed

- The concept that must cope with these new security challenges :
- a. Dynamic adaptation security system to satisfy an overall performance such as power consumption
- b. Autonomic Computing Security pattern
- c. Imperative to address these problems from the beginning of the system design
- d. Using cross layer security

sute école du pays-soe, d'insénieri

Questions

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

UBICOMM 2013 Panel on the Future of Ubiquitous Computing

PROF. TIMOTHY ARNDT, DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE, CLEVELAND STATE UNIVERSITY

Ubiquitous e-Learning

- Many of our students work full time
- Can they use "slack" time to study?
- Add value to our educational offerings

Slack times

- Commuting
- Between classes
- Waiting for meeting to start

Ubiquitous e-Learning

- Learning materials viewed on smart phones and tablets
- But ubiquitous means more than just this
 - Time available can vary
 - So can distractions

Situational awareness

- Sensors can help us achieve this
- Ambient lighting & noise
- Camera to capture facial expression to test understanding
- GPS to find nearby classmates for impromptu study
- Need sensor fusion for awareness

Situational awareness

- Also need classification of learning materials
 - o Length
 - Difficulty
 - Ordering

Conclusions

• Take advantage of general advances in ubiquitous computing

- Interoperability move from vertical to horizontal integration
- Scale up e.g. from smart home to smart city
- Lots of work to do!