PANEL - CONTENT / PATTERNS 2013 Advances on Information Mining

Samuel Kosolapov, Hans-Werner Sehring, Alfred Zimmermann

Panel: Advances on Information Mining

Introduction

- 1. What are the Advances in Information Mining we have to discuss today?
- 1. Goal of our discussion:

We want to discuss about our experiences and our positions, coming from both academia and practice

Panel: Advances on Information Mining

Panelists

Self-introduction of panelists with short information about each person, their work and expectations to our discussion

- Samuel Kosolapov Israel
- Hans-Wener Sehring Germany
- Alfred Zimmermann Germany

Definition of Information Mining

- 1. Origin: Data Mining or Knowledge Discovery from Databases
- 2. **Orientation**: towards high structured data
- 3. Analysis of heterogeneous information sources
- 4. Often combined with Al technologies, like fuzzy logic
- 5. Classical methods from statistics, decision trees, neural networks
- 6. Challenges: mining of texts, models, patterns, image & sound data, medical data, spacial data, other temporal data
- 7. Information Mining: Extension of Data Mining to identify understandable patterns in heterogeneous information sources

Tasks of Knowledge Discovery

- 1. **Deviation Filtering** (Anomaly Detection) of unusual instances
- Associations: Dependency modeling based on monitored associations and association rules learning
- 3. Clustering: discovering type and classes of similar instances
- 4. Classification: mapping of instances to clusters of predefined classes
- 5. Regression: find a function which models the data with least error
- 6. Summarization: compact representation for visualizations or reports
- 7. Pattern Mining: Find sets of instances that occur frequently together

Positions from Panelists

1. Samuel Kosolapov:

YourContributionTitle

2. Hans-Wener Sehring:

YourContributionTitle

3. Alfred Zimmermann:

Extracting and Integrating Metamodel-Information from Capability Maps of IT Enterprise Architectures

Panel: Advances on Information Mining

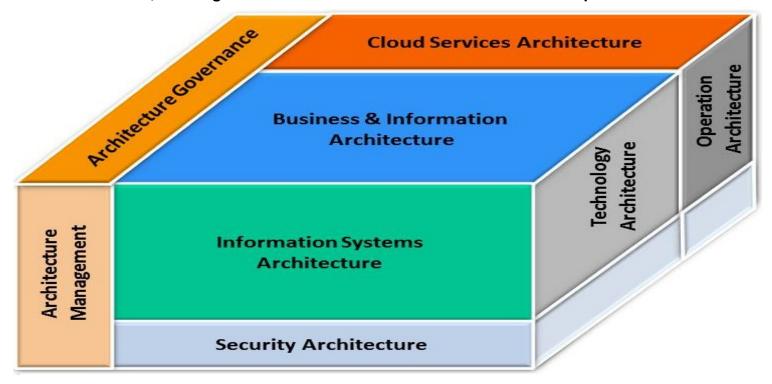
Synthesis of Opinions

- 1. Questions from the audience and answers from panelists
- 2. What are our main conclusions and hypotheses for future work in Information Mining?
- 3. What are the big challenges we have to face?

School of Informatics

Business Informatics

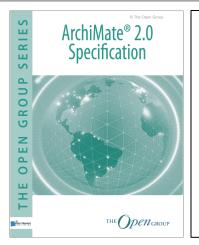
ARL - Architecture Reference Lab


ESAMI – Enterprise Services Architecture Metamodel Integration

Prof. Dr. Alfred Zimmermann

ESARC[©] - Enterprise Software Architecture Reference Cube Architecture Capability Diagnostics, Monitoring, and Optimization

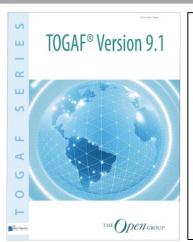
- ESARC defines an original holistic classification scheme for cyclic diagnostics and optimization of eight types (viewpoints) of service-oriented enterprise software architectures
- ESARC substantiates the TOGAF standard with other models to provide a useful mapping foundation of a reference architecture, defining main architecture artifacts and their relationships



ESAMI – Enterprise Services Architecture Metamodel Integration Integration Process

- Analyze each Base Model with Concept Maps
- 2. Extract the **Base Capability Model** from each model: Capability, Model, Element, [Example]
- 3. Initialize the **Reference Architecture Model** from Base Capability Models: Capability, Model, Element
- 4. Analyze **Correlations** (Concept Mappings) between Base Models and Reference Architecture Model, and optionally conclude **transitive correlations** (Min)
- 5. Determine Integration Options for the resulting Capability Integration Model
- 6. Develop the **Synthesis Metamodel** from **Base Metamodels**
- 7. Consolidate the Reference Architecture Model according to the Joined Metamodel, and finally readjust Correlations and Integration Options
- 8. Develop Capability Map and Ontology of the Reference Architecture Model
- 9. Develop Correspondence Rules between Model Elements
- 10. Develop Patterns for Architecture Diagnostics and Optimization

Integration Scenario of Business Architectures from ArchiMate[®] 2.0 and TOGAF 9.1



Open Group Standard

ArchiMate® 2.0 Specification.

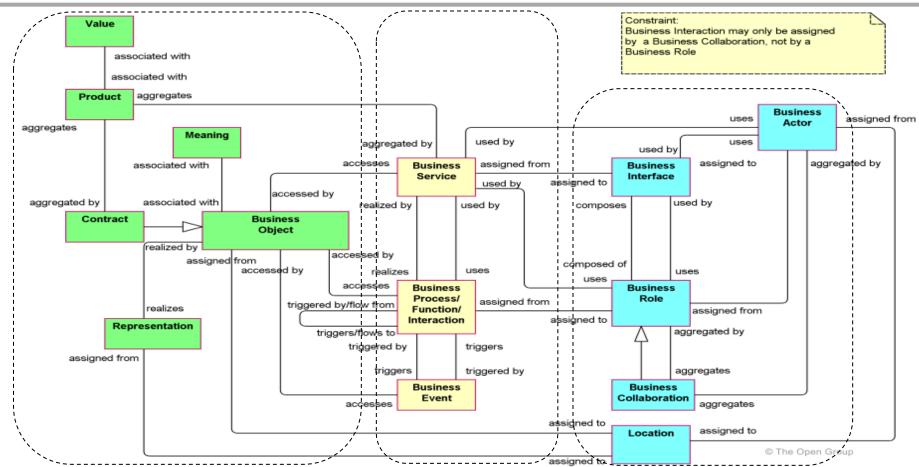
The Open Group 2009-2012,

ISBN 1-937218-00-3

Open Group Standard TOGAF 9.1.

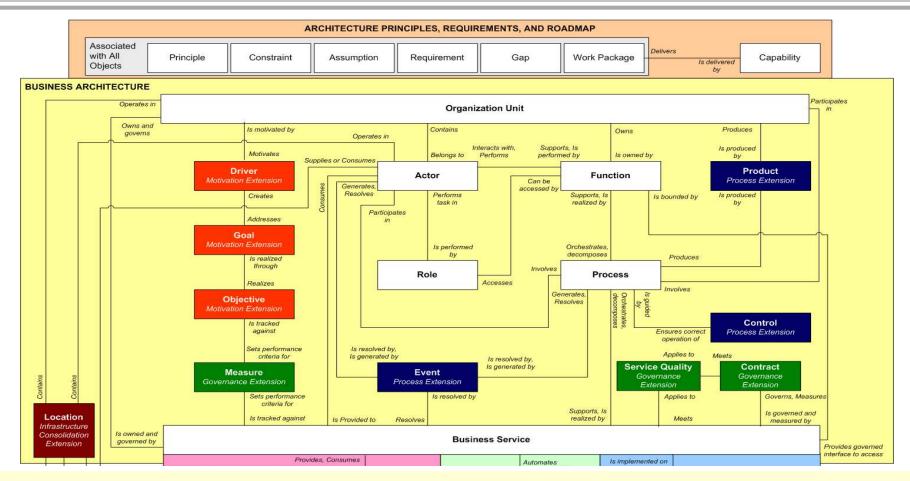
The Open Group 2011,

ISBN 978-9087536794


Capability	Model	Element	Example		
BusinessActivator	BusinessActor	BusinessActor	BusinessActor = Language Insurance		
	BusinessRole	BusinessRole	Department BusinessRole = Travel		
(Viewpoint)	Business Collaboration	Process	Insurance Seller		
	BusinessInterface Location	Service	Process = tale out travel insurance Service = Offering travel insurance		

Capability	Model	Element	Example
Organization (Viewpoint)	Actor Role Location	Actor Role OrganizationUnit Function Process BusinessService Event Location	

ArchiMate 2.0 Business Layer Metamodel


ArchiMate 2.0

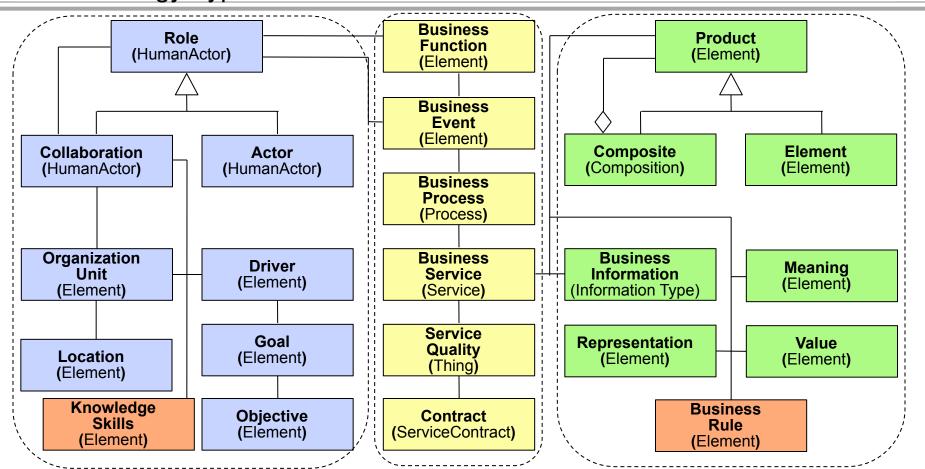
Base Capability Map for BusinessActivator: BusinessActor

Capability	Model	Element	Example	
BusinessActivator		BusinessActor	BusinessActor = Luggage Insurance Department	
	BusinessActor	BusinessRole	BusinessRole = Travel Insurance Seller	
		Process	Process = take out travel insurance	
		Service	Service = Offering travel insurance	

TOGAFBusiness Architecture Metamodel

TOGAF 9.1Base Capability Map for Organization: Actor

Capability	Model	Element	Example
		Actor	
		Role	
Organization	Actor	OrganizationUnit	
		Function	
Organization	710101	OrganizationUnit	
		BusinessService	
		Event	
		Location	



ESAMI – Enterprise Services Architecture Metamodel Integration Consolidated EAM Reference Architecture: Analysis and Integration

Reference	EAM Reference Architecture		Correlation Index		Integration Options		Documents			
Origin	Capability	Model	Element	ArchiMate	TOGAF	ArchiMate	TOGAF	File	Pages	Authors
		ActorRole	Actor	2	2	р	m			
ArchiMate Specific. and TOGAF Standard			Role	3	2	m	m		25-32 87-88	
	Business		Collabo- ration	3	0	m	r			
	Activator		Organiz. Unit	1	3	р	m			
			Business Function	2	3	р				
			Business		3	m	'n			
	Organi- zation	Organi- zation Location	C 0 1 1 2 3 O Loca	low c medi	orrelation correlation um corre g correla	n lation	p p m n	eject partially nandatory leading m		

ESAMI – Enterprise Services Architecture Metamodel Integration SOA Ontology Typed Metamodel of Business Reference Architecture

What are the Advances in Information Mining we What are our main Conclusions and Hypotheses have to discuss today? for future work in Information Mining? Goal of our discussion: We want to discuss about or experiences and our positions coming from both academia and practice. What are the big challenges we have to expect? Origin: Data Mining or Knowledge Discovery from Databases Orientation: towards high structured data Analysis of heterogeneous information sources Questions from the audience and answers from panelists often combined with AI technologies, like fuzzy Information Mining classical methods from statistics, decision trees, Advances in Information Mining mural networks Samuel Now I would ask, what are you doing and what is challenges: mining of texts, models, patterns, your main position with examples from your image & sound data, medical data, spacial data, work? other temporal data Hans-Werner Short Definition of IM: Extension of data mining to identify understandable patterns in Alfred: Extracting and Integrating Metamodelheterogeneous information sources Information from Capability maps of IT Enterprise I'm the moderator of this panel Architecture Deviation Filtering (anomaly detection) of Tasks of Knowledge Discovery my name az, Professor for Software Architecture unusual instances & EAM at RTU, Germany. az Associations: Dependency modeling based on I'm also responsible for my research group at the monitored associations and association rules ARL - Architecture Reference Lab - of the SOA learning Innovation Lab, which is the big research & innovation consortium in EAM of major industrial Clustering: discovering type and classes of companies and public organizations in Germany similar instances and Switzerland. Classification: mapping of instances to clusters of predefined classes I suggest to start first with a short self presentation of each panelist to understand each position coming from the research and practical background. Regression: find a function which models the data with least error Let me first introduce our panelists and ask them Summarization: compact representation for about some insight information about your Samuel Kosolopov from Israel visualizations or reports person, your work and your expectations to our discussion. Hans-Wener Sehring from Germany Pattern Mining: Find sets of instances that occur frequently together

The Fifth International Conference on Creative Content Technologies CONTENT 2013

May 27 - June 1, 2013 - Valencia, Spain

http://www.iaria.org/conferences13/CONTENT13.html

PANEL - CONTENT / PATTERNS 2013

Advances on Information Mining

Samuel Kosolapov, Hans-Werner Sehring, Bijan Raahemi, Alfred Zimmermann

Introduction

- 1. What are the Advances in Information Mining we have to discuss today?
- 2. Goal of our discussion:

We want to discuss about our experiences and our positions, coming from both academia and practice

Panelists

Self-introduction of panelists with short **information** about each **person**, their **work** and **expectations** to our **discussion**

Samuel Kosolapov

Hans-Wener Sehring

Bijan Raahemi

Alfred Zimmermann

Definition of Information Mining

- 1. Origin: Data Mining or Knowledge Discovery from Databases
- 2. Orientation: towards high structured data
- 3. Analysis of heterogeneous information sources
- 4. Classical methods from Statistics, Decision Trees, Neural Networks
- 5. Often combined with Al Technologies, like Fuzzy Logic, Concept Learning
- Challenges: mining of texts, models, patterns, image & sound data, medical data, spacial data, other temporal data
- 7. Information Mining: Extension of Data Mining to identify understandable patterns in heterogeneous information sources

Tasks of Knowledge Discovery

- 1. Deviation Filtering (Anomaly Detection) of unusual instances
- Associations: Dependency modeling based on monitored associations and association rules learning
- 3. Clustering: discovering type and classes of similar instances
- 4. Classification: mapping of instances to clusters of predefined classes
- 5. Regression: find a function which models data with least error
- 6. Summarization: compact representation for visualizations or reports
- 7. Pattern Mining: Find sets of instances that occur frequently together

Positions from Panelists

Samuel Kosolapov

Addition of Rich Data from Smartphone Sensors to Image Metadata

2. Hans-Wener Sehring

Adapting Content Based on Users' Behavior

3. Bijan Raahemi

Machine Learning with Applications in Intrusion Detection

Alfred Zimmermann

Extracting and Integrating Metamodel-Information from Capability Maps of IT Enterprise Architectures

Synthesis of Opinions and Discussion

1. Questions from the audience and answers from panelists

2. What are our main conclusions and hypotheses for future work in Information Mining?

3. What are the big challenges we have to face?

Addition of rich environment, location, motion, and orientation data from smartphone sensors to Image Metadata will provide better scene analysis.

Are current Camera and Image Analyzing applications ready for the change?

Samuel Kosolapov
CONTENT/PATTERNS Panel.
CONTENT 2013. Valencia. 2013-05-29

Google Street View in Compass Mode: Compass that displays your location and direction

~ Standard JPG Image metadata

IMG_2301.JPG JPEG image

Date taken: 2012-11-25 13:35 Tags: Add a tag Rating: * * * * * * Dimensions: 4000 x 3000 Size: 2.33 MB Title: Add a title Add an author Authors: Add comments Comments: Camera maker: Canon

Camera model: Canon IXUS 220HS Subject: Specify the subject

F-stop: f/2.7
Exposure time: 1/30 sec.
ISO speed: ISO-640
Exposure bias: 0 step
Focal length: 4 mm
Max aperture: 2.875

Metering mode: Pattern
Flash mode: No flash, compulsory
Date created: 2013-02-12 17:11

Date modified: 2012-11-25 13:35

I want Sensors Info to be included into the Image Metadata but in a standardized way.

Yes, everyone can add a TAG, but in order to provide metadata search some standardization is required

Galaxy Nexus. List of Sensors

- Camera (Frons & Back) + Optical proximity sensor: GP2A
- Microphone
- TouchScreen sensor: Melfas MMSxxx touchscreen
- Triaxial acceleration sensor BOSCH BMA250
 Measurement of accelerations in 3 perpendicular axes
 Used to sense tilt, motion, shock and vibration. (range +-2g... +-16g; 10 bit !)
- Triple Axis MEMS Gyroscope: InvenSense MPU3050
 3-axis gyroscope with an embedded Digital Motion Processor™ Digital-output X-, Y-, and Z-Axis angular rate sensors (gyros) range of ±250 to ±2000°/sec
 Used to sense: gesture recognition, panning, zooming, scrolling, zero-motion detection, tap detection, and shake detection
 - + Digital-output temperature sensor
- Geomagnetic sensor: tri-axial Yamaha YAS530
 Resolution: 0.15uT (X,Y), 0.3uT (Z)
 Used to sense: Absolute Direction (compass)
- Barometric pressure sensor: BOSCH BMP180

(300...1100 hPa, first of its kind in a smartphone) Used to sense: height over the sea level

Why would I want more sensors data inside the image?

- We have a huge amount of photos and videos in the cloud.
 But search images by content is still very slow and is not always feasible.
- Metadata can provide additional info which can be used to narrow the search.
- Example: Leaning Tower of Pisa "Engineers" announced that the Tower had been stabilized such that it had stopped moving for the first time in its history. They stated it would be stable for at least 200 years

I want to analyze set of images taken from the same camera position, direction and orientation in order to check this claim.

 Actually, sensor information may help to reconstruct 3D scene from a plurality of 2D Images

Adapting Content Based on Users' Behavior.

Panel on Advances on Information Mining. Computation World 2013, Valencia, Spain.

Dr. Hans-Werner Sehring, T-Systems Multimedia Solutions GmbH, Germany.

· · T · · Systems

Scope of Information Mining Used in this Proposition.

- Information/content: purposeful data.
- Mining: Detect implicit relationships in data (similar: find structure in data).
- My field: Content Management.
 - Manually managed content (data).
 - Structure and relationships are well-know/prescribed.
- Observation: Content is perceived in ...
 - a context ("Context is King") ...
 - by a user/consumer/use/situation/...

Learning About Users.

- Information = purposeful data, in a context; here: content targeted at a person.
- Information mining here: learning about users and their use of content.
 - Need to describe persons.
 - No explicit data available.
 - Not willing to give information: consumer, ...
 - Not possible to give info: diverse interest, subjective (nonexplicable) views, ...
 - Known, e.g., from personalization based on tracking/profiling.
- Known, e.g., from personalization based on tracking/profiling.
 - Tracking actions.
 - Allowing registered users to give information about themselves.
 - Observing registered users, eventually including anonymous tracking history.

3

Information Mining on the Web (I).

- In field of content management: Web Content Management now named
 - Web Experience Management (WCM)
 - Customer Experience Management (CEM, CXM)
- Currently of particular interest: marketing automation.

Information Mining on the Web (II).

- Topics, e.g.:
 - Web tracking (what did the customer do?).
 - Learn about customer journeys (how did the customer come to us?).
 - Segmentation (cluster/classify users).
- With the goals to ...
 - Move focus from Point of Sale (PoS) to Point of Contact.
 - Iteratively measure success and improve a site's appearance.
 - Personalization (for groups of users).
 - A/B testing.
 - Compute recommendations (based on segments).
 - Predictive marketing (based on user's history).
- Overall goal of course: increase conversion rate by attracting the customers in the "right" context.
 - $\cdots \mathbf{T} \cdots \mathbf{Systems} \cdot$

Information Mining on the Web (III).

Challenges:

- Getting to know about users.
 - How to identify anonymous users?
 - With different/changing devices?
 - Across different services provided by different service providers?
 - Within legal constraints?
 - How to distinguish different usage scenarios? E.g.,
 - Buy a new washing machine,
 - Having bought a new washing machine,
 - Looking for a washing machine to recommend to the mother in law.
 - How to incentivize users to give information about themselves?
 - ...?

Drawing conclusions from knowledge about users.