

İET	R outline Supélec
1. 2. 3. 4.	SUPELEC/SCEE research team Introduction The « Cognitive Radio » concept CO2 Emission Decrease Obtained Thanks to Power Consumption Reduction
5	At the component levelAt the network level
6.	Electromagnetic Pollution and Spectrum Resources Optimization Recycling the Resources
	Green Communications as a Mean for an Improved Public Health
8.	Conclusion AICT Tutorial June 2013 2

Cognitive Radio-The sensors

IETR

2/5

The CR sensors according to the simplified three layer model

personal choices,) Sound, Video, Speed, Position, Indoor, Outdoor, Vertical Handover, Standard Recognition, Load on a link, Access mode, Power, Modulation, Horizontal Handover, channel estimation, Direction of Arrival,	Sensors	Layers
Recognition, Load on a link, Physical, Data Link Access mode, Power, Physical, Data Link Modulation, Horizontal Physical, Data Link Handover, channel estimation, Direction of Arrival,	Use profile (price, operator personal choices,) Sound, Video, Speed, Position, Indoor, Outdoor,	Application and IHM
Modulation, Horizontal Handover, channel estimation, Direction of Arrival,	Vertical Handover, Standard Recognition, Load on a link,	Transport, Network
	Access mode, Power, Modulation, Horizontal Handover, channel estimation, Direction of Arrival, Consumption,	Physical, Data Link
	ELECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES	AICT Tutorial June 2013

Nur	nerical Analy	SIS	
Parameter description		Value	
Simulation area		1.5km * 1.5km	
Maximum transmission power	Macro BS	20W	
	Micro BS	1W	
Maximum operational power	Macro BS	865W	
	Micro BS	38W	
Height	Macro BS	32m	
	Micro BS	12.5m	
Intra-cell interference factor		0.01	
Channel bandwidth		1.25MHz	
File requests	Arrival rate	$5 \times 10^{-6} \sim 10^{-4}$	
	File size	100kbyte	
Constant power percentage		0.1 ~ 0.9	

İET	R outline Supélec
2. 3.	SUPELEC/SCEE research team Introduction The « Cognitive Radio » concept CO2 Emission Decrease Obtained Thanks to Power Consumption Reduction • At the component level
5.	At the network level Electromagnetic Pollution and Spectrum Resources Optimization
6.	Recycling the Resources
7.	Green Communications as a Mean for an Improved Public Health
8.	Conclusion
IETR - INSTITUT	D'ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES AICT TUTORIAL JUNE 2013

ÎET	outline Sup	élec
1. 2.	SUPELEC/SCEE research team	
3.	The « Cognitive Radio » concept	
4.	 CO2 Emission Decrease Obtained Thanks to Power Consumption Reduction At the component level At the network level 	
5.	Electromagnetic Pollution and Spectrum Resources Optimization	
6.	Recycling the Resources	
7.	Green Communications as a Mean for an Improved Public Health	
	Conclusion	22

