

Herbert Kuchen

joint work with: Dominik Böhm, Susanne Gruttmann, Tim Majchrzak,

Claus Usener, Christoph Lembeck, Roger Müller, Marko Ernsting

European Research Center for Information Systems

E-Assessment of Creative Tasks

> Introduction

- regular assessment of the learning progress required
- identify and evaluate teaching success
- mass lectures, decreasing resources and low personnel capacities
- computer-supported assessments help to reduce time and costs

2

E-Assessment of Creative Tasks

> Formative Assessments

• regular exercises as complementary service for lectures:

> Students	> Lecturers / Tutors
 get an active part in learning process reflect lecture content practice and consolidate newly learned knowledge generate skills while solving corresponding tasks 	 get an overview on learning progress of students detect whether educational objectives are achieved

> Formative assessments can enhance quality of education <

3

4

> Processes in Traditional Formative Assessments

Wissen leben W///// Miinster

> E-Assessment Systems Today

• provide multiple choice questions, insertion of short text, and other simple forms of questions

• existing systems check knowledge rather than skills

> How to check creative skills? <

5

Creative Forms of E-Assessment

- Mathematical proofs
- Programming
- ...

E-Assessment of Creative Tasks

> Agenda

> Introduction

> Assessments in Mathematics

> The E-Assessment System EASy

> E-Assessment of Java Programs

> Conclusion

7

8

> Formative Assessment of Mathematical Proofs

- proof exercises indispensable in math-related lectures
- complexity proofs is often high
- evaluating and grading proofs is complex and time-consuming

> Electronic support for assessment of mathematical proofs? <

9

> Shortcomings of Existing Systems for Mathematics

- only few e-assessment systems focus on mathematics
- simple knowledge checks with multiple choice etc.
- some provide support for numeric and symbolic calculations
- some systems support propositional logic
- no literature on processes for e-assessment of proofs in general

> Electronic assessment of proofs is not provided <

E-Assessment of Creative Tasks

10

> Agenda

> Introduction

> Assessment in Mathematics

> The E-Assessment System EASy

> E-Assessment of Java Programs

Conclusion

E-Assessment of Creative Tasks

11

> **Requirements**

wissen.leben WWU Münster

> The E-Assessment System EASy

- allows to establish a mathematical proof
 - step by step
 - by applying predefined rules and strategies
- a student cannot proof wrong theorems (but can get stuck)
- EASy implemented as Java applet
- based on term rewriting internally

E-Assessment of Creative Tasks

14

> Using EASy for Proof Exercises

wissen.leben WWU Münster

15

> Evaluation of EASy

• Application of EASy in "Data Structures and Algorithms" (250 students):

	> Advantages	> Disadvantages	
> Students	 provides proof strategies and applicable rules controls correct use of rules supports to learn proof structure 	 familiarisation complex first proofs time consuming small steps: proof of obvious term conversions necessary electronic proving vs. manual skills 	
> Tutors	 reduces correction effort significantly easier to read and well-structured enhances quality of submissions facilitates distribution and collection of solutions 	• none	-

E-Assessment of Creative Tasks

16

> Evaluation of EASy

wissen.leben WWU Münster

E-Assessment of Creative Tasks

> Agenda

> Introduction

> Assessment in Mathematics

> The E-Assessment System EASy

> E-Assessment of Java Programs

Conclusion

18

E-Assessment of Java Programs

E-Assessment of Java Programs

- the EASy Manager generates a set of test cases from the example solution
- it checks the uploaded classes of the student
 - syntactically
 - w.r.t. programming style
 - using the given and hidden test cases
- it gives feedback to the student

E-Assessment of Creative Tasks

Automatic Generation of Test Cases

- Symbolic Execution of Java-Byte-Code by SJVM
- On branching instructions (e.g. if_cmpgt, invokevirtual):
 - Constraint solver determines remaining alternatives
 - Alternatives are handled by successively by backtracking mechanism

E-Assessment of Creative Tasks

Symbolic Evaluation: idiv

wissen.leben WWU Münster

Неар

E-Assessment of Creative Tasks

Symbolic Evaluation: idiv

wissen.leben WWU Münster

Неар

E-Assessment of Creative Tasks

Symbolic Evaluation: idiv

wissen.leben WWU Münster

E-Assessment of Creative Tasks

Saving Previous Values: istore 4

wissen.leben WWU Münste

Heap

E-Assessment of Creative Tasks

Saving Previous Values: istore 4

Heap

E-Assessment of Creative Tasks

Branching: if_icmpgt 61

E-Assessment of Creative Tasks

Branching: if_icmpgt 61

E-Assessment of Creative Tasks

Constraint Solvers

- General requirements:
 - Incremental
 - Support backtracking
 - Allow to compute a concrete solution \rightarrow test case
- Dual simplex algorithm + branch & cut algorithm for linear mixed-integer constraints
 - Uses special interval arithmetic to avoid rounding errors
- Numeric non-linear (bisection) solver
- Future work: add SMT solver

E-Assessment of Creative Tasks

Bisection Solver

- Numerical approach to solution of polynomial equations
- Successive decomposition of solution space
- Each subspace R is checked for roots:
 - min { $p(x) | x \in R$ } < 0 and max{ $p(x) | x \in R$ } > 0 ?
 - Yes: decompose R
 - No: discard R

Soundness and Completeness?

- Soundness due to interval arithmetic
- Completeness:
 - Theoretically impossible (\rightarrow halting problem)
 - No serious problem in practice

E-Assessment of Creative Tasks

Which Constraints Appear?

	Type of Constraints			
Example	linear	non-linear	double	integer
Ackermann				\checkmark
Binary search				
bubblesort	\checkmark			
Bresenham	\checkmark			
factorial	\checkmark			
Gaussian eliminanation	\checkmark			
GCD	\checkmark	\checkmark		
histogram	\checkmark			
Dijkstra	\checkmark			
Matrix multiplication	\checkmark			
Text search	\checkmark			
log			\checkmark	
sin		\checkmark	\checkmark	
cart				
syn		V	N	

E-Assessment of Creative Tasks

32

> Agenda

> Introduction

> Assessment in Mathematics

> The E-Assessment System EASy

> E-Assessment of Java Programs

> Conclusion

> Conclusion

- development, application and evaluation of the EASy prototype
- e-assessments of mathematical proofs
- e-assessment of Java programs based on test cases generated from an example solution
- design, application and evaluation of a process model for formative e-assessment of proofs and Java programs