ICN Panel: Internet at Crossroads!

- bandwidth
- speed
- protocols (IPv6, new TCP ?)
- scalability
- autoconfiguration
- Access, availability
- Energy / green internet
- New Internet (IoT, ...)

• Guest panelists:

Benoit Escrig, Université de Toulouse, France Mingmei Li, KDDI R&D Labs., Japan Fanilo Harivelo, Université de la Réunion, France Katsuhiro Naito, Mie University, Japan

Mobile Data Collection-Applications & Technologies

ICN 2012 Panel

Mingmei Li, Kazuyuki Tasaka, Kiyohito Yoshihara KDDI R&D Labs., Japan

Mobile Data Collection- Application

Personal Data (smart-phone, tablet user)

- Smartphone application / network log
- Health, breath record, sports data,
- Tracking, location based services GPS, wifi,
- Purchasing data, barcode scanning, environment data, air Pollution

Data Center

Market/commercial
Contents recommendation

(Amazon, Yahoo, Facebook, ISP,)

Hospital / Health Center • Healthy monitoring, management, consulting, supporting Google, Microsoft, KDDI, docomo, etc,)

Designing The Future

2

amazon

1000le

M

Mobile Data Collection- Technologies

Challenges& status

End-user (smart-phone, tablet user)

Anonymous collection personal information security/ privacy

User context information collection (e.g., camera, RFIF, GPS, wifi, phone built-in sensors (KDDI labs.)) energy/ memory constraint

<u>Challenges</u> <u>& status</u>

Data center (Platform)

Cloud computing Virtualization

Business Modeling (automatically)

Prediction possibility

Robust (adaptively to other field)

Effectiveness (low cost)

Mobile Data Collection- Technologies

Our proposal

obtain Location Data with High Accuracy (Indoor environments)

To obtain location data with high accuracy, we use reference information from phone built-in sensors.

• Our result: location data can be obtained with less error, about 20%-40%, with less reference landmarks in indoor environment.

• Effects: supports a mother find her children in a shopping more accurate

e.g. HTC Touch Diamond's built in accelerometer, with .NET CF 2.0, allows user to know steps, distance, etc.

ICN 2012, Reunion Island

Cooperative communication and Seamless mobility at Crossroads

Katsuhiro Naito

Mie University, Japan

March 3, 2012

Communication at Crossroads

Tough communication is required

- High packet delivery ratio
- Short transmission delay
- High scalability

Physical layer performance is important to improve these requirements

OFDM based cooperative communication has good benefit at Crossroads

OFDM(Orthogonal Frequency Division Multiplexing) based cooperative communication scheme

Neighbor vehicles forward same OFDM signal simultaneously

Seamless mobility at Crossroads

Vehicles switch access networks such as 3G, WiMAX, WiFi etc.

- IP address change causes connection breaks
- Seamless communication between IPv4 and IPv6 is difficult

NTMobile (Network Traversal with Mobility)

NTMobile network

Vehicles can achieve continuous communication by using virtual an IP address over IPv4 & IPv6 networks

Thank you for your attention!

Cooperative Communications : Challenges for Practical Implementations

Benoît ESCRIG IRIT Laboratory Université de Toulouse Toulouse, France

Cooperative Communications at the PHY Layer

STEP 2 R S D

Gains: Increased SNR at the receiver Distributed MIMO

SNR : Signal to Noise Ratio MIMO: Multiple Input Multiple Output

Transmission schemes: Amplify-and-Forward Decode-and-Forward

Options:

One or several relays Channel and/or space-time coding **Issues:**

Information Theory Issues (optimizing the Diversity/Capacity Tradeoff)

Open Issues:

Mobile relays, mesh and ad hoc networks Joint PHY-MAC Design of Cooperative Protocols

Cooperative Communications at the MAC Layer

<u>Allocating relays to a direct transmission:</u> collection of CSI, selection, notification of the result

<u>Network Issues</u>: network performance, power control, rate adaptation, fairness, interoperability

CSI : Channel State Information

Conclusion

Fixed Relays : MIMO Issues Mobile Relays: Open Issues

Open Issues: Interactions between cooperative techniques and other optimization issues

Thank you !

ICN Panel Benoît Escrig <u>escrig@enseeiht.fr</u> http://escrig.perso.enseeiht.fr