
In-Memory Data Management for
Enterprise Applications

Jens Krueger
Senior Researcher and Chair Representative
Research Group of Prof. Hasso Plattner

Hasso Plattner Institute for Software Engineering
University of Potsdam

Agenda

2

1.  Changed Hardware

2.  Advances in Data Processing

3.  Todays Enterprise Applications

4.  The In-Memory Data Management for

Enterprise Applications

5.  Impact on Enterprise Applications

All Areas have to taken into account

3

Changed
Hardware

Advances in
data processing

(software)

Complex
Enterprise Applications

Our focus

Why a New Data Management?!

■ DBMS architecture has not changed over decades
■ Redesign needed to handle the changes in:

□ Hardware trends (CPU/cache/memory)
□ Changed workloads
□ Data characteristics
□ Data amount

■ Some academic prototypes:
MonetDB, C-store, HyPer, HYRISE

■ Several database vendors picked up
the idea and have new databases in place
(e.g., SAP, Vertica, Greenplum, Oracle)

4

Buffer pool

Query engine

Traditional DBMS Architecture

A

Changes in Hardware…

… give an opportunity to re-think the assumptions of
yesterday because of what is possible today.

■ Main Memory becomes cheaper and larger

■  Multi-Core Architecture
(96 cores per server)

■  One blade ~$50.000 =
1 Enterprise Class Server

■  Parallel scaling across
blades

■  64 bit address space

■  2TB in current servers

■  25GB/s per core

■  Cost-performance ratio
rapidly declining

■  Memory hierarchies

5

In the Meantime
Research as come up with…

■ Column-oriented data organization
(the column-store)
□  Sequential scans allow best bandwidth utilization

between CPU cores and memory
□  Independence of tuples within columns allows easy

partitioning and therefore parallel processing

■  Lightweight Compression
□  Reducing data amount, while..
□  Increasing processing speed through late materialization

■ And more, e.g., parallel scan/join/aggregation

6 … several advance in software for processing data

+

Two Different Principles of Physical
Data Storage: Row- vs. Column-Store

■  Row-store:
□  Rows are stored consecutively
□  Optimal for row-wise access (e.g. *)

■  Column-store:
□  Columns are stored consecutively
□  Optimal for attribute focused access (e.g. SUM, GROUP BY)

■ Note: concept is independent from storage type
□  But only in-memory implementation allows fast tuple

reconstruction in case of a column store

7

Doc
Num

Doc
Date

Sold-
To

Value
Status

Sales
Org

Row
4

Row
3

Row
2

Row
1

Row-Store Column-store

+

OLTP- and OLAP-style Queries
Favor Different Storage Patterns

Column Store Row Store

SELECT *
FROM Sales Orders
WHERE Document Number = ‘95779216’

SELECT SUM(Order Value)
FROM Sales Orders
WHERE Document Date > 2009-01-20

Row
4

Row
3

Row
2

Row
1

Row
4

Row
3

Row
2

Row
1

Doc
Num

Doc
Date

Sold-
To

Value
Status

Sales
Org

Doc
Num

Doc
Date

Sold-
To

Value
Status

Sales
Org

8

Motivation
for Compression in Databases

9 ■ Main memory access is the bottleneck

■  Idea: Trade CPU time to compress and decompress data

■  Lightweight Compression

■  Lossless

■ Reduces I/O operations to main memory

■  Leads to less cache misses due to more information on a
cache line

■  Enables operations directly on compressed data

■  Allows to offset by the use of fixed-length data types

Lightweight Dictionary Encoding for
Compression and Late Materialization

■  Store distinct values once in separate mapping table (the
dictionary)

■  Associate unique mapping key (valueID) for each distinct value
■  Store valueID instead of value in attribute vector
■  Enables offsetting with bit-encoded fixed-length data types

10

Attribute Vector

RecId ValueId
1  4
2  1
3  2
4  4
5 3
6 3
7 5
8 4

Dictionary

Inverted Index

… … …
€3 INTEL AUG
€4 SIEMENS JUL
€5 IBM JUN
€5 IBM MAY
€4 INTEL APR
€2 HP MAR
€2 ABB FEB
€1 INTEL JAN

RecId 1
RecId 2

RecId 3

RecId 4
RecId 5
RecId 6

RecId 7
RecId 8
…

ValueId RecIdList
1  2
2  3
3  5,6
4  1,4,8
5  7

ValueId Value
 1 ABB
 2 HP
 3 IBM
 4 Intel
 5 SIEMENS

Table

Attribute:
Company Name

•  Typical compression factor for
enterprise software 10

•  In financial applications up to 50

Data Modifications
in a Compressed Store

11

Merge Process

Insert/Update Select
(union)

■  Differential Store: two separate in-memory partitions
■  Read-optimized main partition (ROS)
■  Write-optimized delta partition (WOS)

■  Both represent the current state of the data
■  WOS/Delta as an intermediate storage for several

modifications
■  Re-compression costs are shared among all recent

modifications (merge process)

WOS ROS
(asynchronously)

Todays Enterprise Applications

■  Enterprise applications have evolved:
not just OLTP vs. OLAP
□  Demand for real-time analytics on transactional data
□  High throughput analytics è completely in memory

■  Examples

□  Available-To-Promise Check – Perform real-time ATP check
directly on transactional data during order entry, without
materialized aggregates of available stocks.

□  Dunning – Search for open invoices interactively instead of
scheduled batch runs.

□  Operational Analytics – Instant customer sales analytics
with always up-to-date data.

■  Data integration as big challenge (e.g. POS data)

12

Enterprise Workloads are Read-Mostly

13 •  Customer analysis shows a widening
“read”-gap between transactional and analytical queries

•  It is a myth that OLTP is write-oriented, and OLAP is read-
oriented

•  Real world is more complicated than single tuple access, lots
of range queries

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

OLTP OLAP

W
o

rk
lo

a
d

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

TPC-C

W
o

rk
lo

a
d

Select

Insert

Modification

Delete

Write:

Read:

Lookup

Table Scan

Range Select

Insert

Modification

Delete

Write:

Read:

Enterprise Data is Typically Sparse

14
•  Enterprise data is wide and sparse
•  Most columns are empty or have a low cardinality of

distinct values
•  Sparse distribution facilitates high compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 - 32 33 - 1023 1024 - 100000000

13%
9%

78%

24%

12%

64%

Number of Distinct Values

Inventory Management
Financial Accounting

%
 o

f C
ol

um
ns

Transactional
Data Entry

Sources: Machines,
Transactional Apps, User
Interaction, etc.

Text Analytics,
Unstructured Data

Sources: web, social, logs,
support systems, etc.

Event Processing,
Stream Data

Sources: machines, sensors,
high volume systems

Real-time Analytics,
Structured Data

Sources: Reporting, Classical
Analytics, planning,
simulation

Data
Management

CPUs
(multi-Core +

Cache + Memory)

Challenge 1 for Enterprises:
Dealing with all Sorts of Data

15

… create different application-specific silos with
redundant data that reduce real-time behavior &
increase complexity.

ETL

Transactional ANALYTICAL

ANALYTICAL CUBES

RDB on Disk
(Tuples)

RDB on Disk
(Star Schemas)

Column Store In-Memory
(Fully Cached Result Sets)

Accelerator

Text Processing

Blobs and Text
Columns In-Memory

Challenge 2 for Enterprises:
Current application architectures…

16

Drawbacks of this Separation

■  Historically, OLTP and OLAP system are separated because
of resource contention and hardware limitations.

But, this separation has several disadvantages:
■  OLAP system does not have the latest data

■  OLAP system does only have predefined subset of the data

■  Cost-intensive ETL process has to keep both systems
in synch

■  There is a lot of redundancy

■  Different data schemas introduce complexity for applications
combining sources

17

Approach

■  Change overall data management system
assumption
□  In-Memory only
□  Vertically partitioned (column store)
□  CPU-cache optimized
□  Only one optimization objective – main memory

access

■  Rethink how enterprise application persistence is
build
□  Single data management system
□  No redundant data, no materialized views, cubes
□  Computational application logic closer to the

database
(i.e. complex queries, stored procedures)

18

Backup

Column

ROW TEXT

IN-Memory Column + Row
OLTP + OLAP + Text

Intermezzo

19 ■ Hardware advances
□  More computing power through multi-core CPU’s

□  Larger and cheaper main memory

□  Algorithms need to be aware of the “memory
wall”

■ Software advances
□  Columns stores superior for analytic style queries

□  Light-weight compression schemes utilize modern
hardware

■  Enterprise applications
□  Need to execute complex queries in real-time

□  One single source of truth is needed

How does it all come together?

20 1. Mixed Workload combining OLTP and
 analytic-style queries
■  Column-Stores are best suited for analytic-style queries
■  In-memory database enables fast tuple re-construction
■  In-memory column store allows aggregation on the fly

2. Sparse enterprise data
■  Lightweight compression schemes are optimal
■  Increases query execution
■  Improves feasibility of in-memory database

3. Mostly read workload
■  Read-optimized stores provide best throughput

■  i.e. compressed in-memory column-store
■  Write-optimized store as delta partition

to handle data changes is sufficient

Changed
Hardware

Advances in
data processing

(software)

Complex
Enterprise Applications

Our focus

SanssouciDB: An In-Memory
Database for Enterprise Applications

In-Memory Database (IMDB)
■  Data resides permanently

in main memory

■  Main Memory is the
primary “persistence”

■  Still: logging to disk/recovery
from disk

■  Main memory access is
the new bottleneck

■  Cache-conscious algorithms/
data structures are crucial
(locality is king)

21

Main Memory
at Blade i

Log

SnapshotsPassive Data (History)

Non-Volatile
Memory

RecoveryLogging
Time
travel

Data
aging

Query Execution Metadata TA Manager

Interface Services and Session Management

Distribution Layer
at Blade i

Main Store Differential
Store

Active Data

M
e

rg
eC
o

lu
m

n

C
o

lu
m

n

C
o

m
b

in
e
d

C
o

lu
m

n

C
o

lu
m

n

C
o

lu
m

n

C
o

m
b

in
e
d

C
o

lu
m

n

Indexes

Inverted

Object
Data Guide

Impact on
Application Development

Traditional In-Memory Column-Store

Application
cache

Materialized
views

Prebuilt
aggregates

Raw data

§  Less caches needed

§  No redundant objects

§  No maintenance of
materialized views or
aggregates

§  Minimized index
maintenance

§  Data movements are
minimized

22

23

Impact on Enterprise Applications:
Financials as of Today

24

Impact on Enterprise Applications:
Simplified Financials on In-Memory DB

■  Only base tables, algorithms, and some indexes
■  Reduces complexity
■  Lowers TCO

■  While adding more flexibility, integration, and functionality

Conclusion

25

■  In-memory column stores are better suited as database
management system (DBMS) for enterprise applications
than conventional DBMS
□  In-memory column stores utilizes modern hardware optimally
□  Several data processing techniques leverage in-memory only

data processing

■  Enterprise applications show specific characteristics:

□  Sparsely filled data tables
□  Complex read-mostly workload

■  Real-world experiences have proven the feasibility

of the in-memory column-store

Thanks!

Questions?

26

Jens Krueger
Hasso Plattner Institute
jens.krueger@hpi.uni-potsdam.de

