A Model-driven, Component-based and Service-oriented Approach for Designing an Autonomic Transport Protocol

Ernesto Expósito ernesto.exposito@laas.fr

> Université de Toulouse LAAS-CNRS INSA

Context and problem statement

Distributed applications requirements

Transport

protocols

Network

services and

technologies

New generation transport layer

Which service?
 •Application reqs +
 network const.
 •monolithic vs
 composite?

How to adapt? •Component behavior •Composite struct.

How to be autonomous? •Self-config •Self-adapt

Approach

Methodology	Models	Paradigms
requirements-oriented model-driven unified process:	Software architecture: <u>UML</u>	Component-based design (vs. monolithic)
 Requirements Design Specification (model) 	Knowledge: <u>OWL</u> (ontologies)	Adaptive and autonomic management (vs. manual-human mg.) Service-oriented design (vs. static/hard-binding)
 and validation 4) Implementation 5) Tests and performance evaluation 6) Deployment 	Decision: analytic/ learning based model	

Outline

Application and network aware

 New generation transport layer (incremental design) Component-based and (micro)service-oriented

Adaptive

Autonomic

Phase I: the basis

- Requirements
- Design of the Fully Programmable Transport Protocol (FPTP)
- Specification and validation
- Implementation and test/performance evaluation
- Deployment

Requirements

- RI: How to provide the most adequate service taking into account application requirements and network services
- R2: How to easily integrate future components (more specialized mechanisms)

Design (RI): mechanisms

Design (R2): architecture

Specification: transport mechanism composition

Specification: mechanism active behavior

Validation of UML specification

- Environment: IBM-Rational TAU platform (profile: UMLverification)
 - Generation of executable model
- Approach
 - Dynamic model consistency
 - Interactive simulations for functional validation:
 - Validation per use case: instantiation, interconnection, communication, deadlocks free
 - Limitations: complexity to cover all potential protocol states

Implementation and Test/ performance evaluation

- JAVA implementation
- Evaluation:
 - Experimental network environment based on a network emulator (Dummynet) and streaming audio/video applications

Deployment

- European Project GCAP (1999-2001):
 - Active deployment of FPTP services (active networks)
- European Project EuQoS (2004-2006):
 - Deployment and evaluation of application-aware/ network-aware mechanisms over heterogeneous network services

Incremental design....

- Benefits of FPTP by offering
 - A component-based architecture
 - A large set of application and network-aware composite transport mechanisms
- New requirements: more elaborated adaptive strategies

Phase II: adaptation

- Requirements
- Design of the Enhanced Transport Protocol
 - Adaptive: Behavioral and structural adaptation
- Specification and validation
- Implementation and test/performance evaluation
- Deployment

Requirements

- Req 3: Behavioral adaptation
 - Adaptive mechanisms based on generic application traffic semantic
- Req 4: Structural adaptation
 - Dynamic configuration of compositions in response to network changes
 - learning based decision model

Design of a model-driven QoS interpreter to allow generic behavioral adaptation (R3)

- Generic interpreter (vs. adhoc solutions) offering standard interface to retrieve properties/constraints of multimedia streams (i.e. H. 264, MPEG2, H.263, etc.)
- Used for designing/developing QoS adaptive mechanisms (i.e. error control, rate/congestion control)

Design of

model-driven structural adaptation (R4)

- Analytic model approach
 - Includes all the valid compositions
 - Guides the selection based on requirements and network conditions
- Learning-based model approach
 - Extension of the Markov Decision process (eMDP)
 - Obtained by reinforcement learning techniques

Behavioral and Structural adaptation (PR)

% PLR (emulated network, e2e delay=40ms)

○ (I,P) = (50%,0%) ○ (I,P) = (100%,0%) ○ (I,P) = (100%,50%)

Behavioral and Structural adaptation (TFRC)

Comm. channel simulating congested, delayed and lossy network scenarios

Deployment

- European Project EuQoS (2006-2007):
 - Behavioral adaptation strategies (RC) over heterogeneous network services
- European Project NetQoS (2006-2008):
 - Integration of adaptive ETP services within the autonomic NetQoS system

Incremental design....

- Adaptive transport protocol mature for autonomic
 - Behavioral adaptation
 - Structural adaptation
- New requirements:
 - Self-configuring
 - Self-adapting

Phase III: autonomic

- Requirements
- Design of the Autonomic Transport Protocol
 - Autonomic, service-oriented and ontology-driven architecture
- Specification and validation
- Implementation and test/performance evaluation
- Deployment
- Conclusions

Requirements

- Req 5: Integration of current solution within an autonomic architecture
- Req 6 : AC knowledge base for self-configuring and self-adapting properties

Specification of the

Autonomic Transport Protocol Architecture (R5)

Implementation of an Ontology-driven Autonomic-manager offering self-configuring and self-adapting functions (R6) ODA Ontologies

VI: representation and consistency: transport mechanisms, functions, protocols and services

V2: inferencing capabilities for SOA/CB self-configuring: services properties, components and composites

V3: inferencing capabilities for self-adapting behavioral (tuning) structural (reconfiguring)

QoS Transport Ontology OWL implementation

Example: Error/throughput/time controlled service discovery

Deployment

- European(Celtic) Project Feel@home (2008-2010):
 - Design and development of an Ontology-driven architecture for autonomic QoS management in home networks (UPnP)
- IMAGINE (starting from 2011) IP Project (Virtual Factories/Enterprises)
 - Design and development of an autonomic service bus integrating ATP services for heterogeneous information systems

Conclusions and Perspectives

Conclusions and Perspectives

