Panel @ 10th International Conference on Networks (ICN 2011)

• Moderator: - Stein Gjessing, University of Oslo, Norway • Panelists: - Börje Josefsson, SUNET, Sweden - Stein Gjessing, University of Oslo, Norway - Andreas Löffler, Friedrich-Alexander-University of Erlangen-Nüremberg, Germany - Gary Weckman, Ohio University - Athens, USA • The ubiquitous Internet - A network that is everywhere - With acceptable network performance • Is the network performance good enough for me? • TCP vs. UDP • QoS ?? - Overengineering • Wireless issues • Wired issues • Access vs. core network • Link capacity • Router capacity • Queuing

• Etc., etc.

Dealing with network performance Stein Gjessing, University of Oslo

- The ubiquitous Internet
 - A network that is everywhere
 - With acceptable **network performance**
 - Is the network performance good enough for my use?
- Currently I (with colleague Michael Welzl) struggle with the transport layer:
 - All application currently use TCP (or UDP)
- How can we (and why should we) improve the transport protocol?

Transport protocols

- Issues (wanted choices we mostly don't have in TCP)
 - Connection oriented
 - Flow control
 - Congestion Control
 - Packet bundling
 - Error detection
 - Reliability
 - Delivery type (message or stream)
 - Delivery order (also in order to use multi-path)
 - Multiple streams
 - Multi homing
 - Acceptable performance over a combination of wired and wireless links

The transport tussle

- "There is a vicious circle application developers will not use a new protocol (even if it is technically superior) if it will not work end-to-end; OS vendors will not implement a new protocol if application developers do not express a need for it; NAT and firewall vendors will not add support if the protocol is not in common operating systems; the new protocol will not work end-to-end because of lack of support in NATs and firewalls."
 M. Handley. Why the Internet only just works. BT Technology Journal, 24 (3):119–129, 2006.
- This is a catch-22 problem. The SIGCOMM 2002 paper "Tussle in Cyberspace: Defining Tomorrow's Internet" [2] discusses this problem at length

Not only TCP (and UDP)

- We need new alternatives at the transport layer
- But: Firewalls, middle-boxes, routers, only accept TCP-headers (and UDP-headers)
- How to deploy new and better transport layer protocols like:
 - Stream Control Transmission Protocol (SCTP)
 - Sequenced delivery within multiple streams
 - Datagram Congestion Control Protocol (DCCP)
 - Explicit Congestion Notification, feature negotiation

- Invoke SCTP instead of TCP
- This will improve TCP with
 - Multiple streams over the same connection
 - E.g. when loading a web page
- Always beneficial ?
- Always enabled or negotiated ?
- Fall back to TCP if the other end doesn't support SCTP

Börje Josefsson <bj@sunet.se>

2011-02-01

SUNET

the Swedish national research and education network

- **SUNET**
- Give universities access to both national and international connectivity of high class.
- Key factors are <u>availability</u> and <u>capacity</u>.
- Should not be a bottleneck in the Universities communication with the rest of the world.
- 2 * 10 Gbit/s (exclusive), to all large universities.
- 2 * 1 Gbit/s (exclusive), to the smaller universities and colleges.

Some SUNET diary notes

- **[1988]** IP connectivity to all universities.
- [1988] First European NREN to get connection to the US research networks.
- **[2001]** First(?) 10 Gbit/sec <u>nationwide</u> core network.
- [2004] Internet Land Speed Record -- 4,3Gbit/sec over 29.000 km
- **[2006]** Network based on dark fiber and DWDM.
- [2007] First European long haul 40G

("World's fastest mom") \rightarrow

[2008] World's longest 40G (Luleå-New York).

... be prepared...

Börje Josefsson <bj@sunet.se>

2011-02-01

What is *performance*?

Reply from 193.11.X.X: bytes=32 time=199ms TTL=236 Reply from 193.11.X.X: bytes=32 time=334ms TTL=236 Request timed out. Request timed out. Request timed out. Reply from 193.11.X.X: bytes=32 time=229ms TTL=236 Request timed out. Reply from 193.11.X.X: bytes=32 time=197ms TTL=236 Reply from 193.11.X.X: bytes=32 time=1616ms TTL=236 Request timed out. Request timed out. Request timed out. Reply from 193.11.X.X: bytes=32 time=341ms TTL=236 Request timed out. Reply from 193.11.X.X: bytes=32 time=388ms TTL=236 Reply from 193.11.X.X: bytes=32 time=294ms TTL=236 Request timed out. Reply from 193.11.X.X: bytes=32 time=261ms TTL=236

Ping statistics for 193.11.X.X:

Packets: Sent = 560, Received = 380, Lost = 180 (32% loss),

Approximate round trip times in milli-seconds:

Minimum = 190ms, Maximum = 3632ms, Average = 320ms

Example from the conference network this morning.

Performance ≠ speed!

Performance thoughts [1]

The network world is becoming upside down

We used to design the campus/enterprise networks like this:

But now the user wants to be wireless, and "the cloud" is coming.

UNET

Performance thoughts [2]

- Don't treat QoS as being the magic "Create Bandwidth" wand!
- If you have bandwidth problems, QoS will not solve those, just move the problem somewhere else!

- QoS still might make sense, on slow edge links but not at the core level.
- Inter-domain QoS is a nightmare and a mess, often creating more problems than it solves.
- For the university world who decides which researcher is more important than the other...
- In the long run, throwing more bandwidth on the problem often becomes easier and/or cheaper...

The Tenth International Conference on Networks ICN 2011

Panel Discussion:

Adoption of wide-band spread-spectrum modulated signals to localize UHF-RFID tags

Andreas Löffler

January 24, 2011 – St. Maarten, The Netherlands Antilles

Scenario

Chair of Information Technologies with Focus on Communication Electronics

Scenario (cont'd)

Chair of Information Technologies with Focus on Communication Electronics

Scenario (cont'd)

Chair of Information Technologies with Focus on Communication Electronics

State-of-the-Art

- ▶ RSSI-based → Fingerprinting, Reference tags
- AoA and DoA → more antennas
- Low accuracy because of Multi-path propagation and low bandwidth

→ Why not use wideband signals (with lower power) ?

Results - Simulation

Chair of Information Technologies with Focus on Communication Electronics

Ξ

The Tenth International Conference on Networks ICN 2011

Panel Discussion!?

Andreas Löffler

January 24, 2011 – St. Maarten, The Netherlands Antilles

The Tenth International Conf. on Networks (ICN 2011)

Network Performance Panel

"Network Service Industry and Outages"

Gary Weckman, Ohio University weckmang@ohio.edu

Status: Industry View of Outages

- "Industry" means service provider
- Impact and duration
 - Multiple services may be impacted by an outage
 - Multiple outages are often ongoing at one time
 - Each service may have separate outage profile
- What is "impact"?
 - Number of customers affected
 - Extent of impact on particular clients
 - Service provider revenue
 - Service provider reputation
- Service Provider Priorities:
 - Attend to restoring services and outages based on:
 - Impact to important clients
 - Impact on service provider revenue
 - Number of clients impacted

Vision: Tools to Balance Investment and Operational Decisions

- Optimization problem
 - Balance proactive and reactive response to outages
 - Proactive requires invest in fault tolerance
 - Reactive requires quick response capabilities
 - Min {Impact, Duration}
 - Balance {Investment Income, Operational expense}
- Need reactive tools to effectively manage network
 - Physical plane
 - Service plane
 - Control plane
- Need proactive intelligent analysis of outage data to track reliability, maintainability, availability, and survivability trends
 - Improvement
 - Constancy
 - Deterioration