
Assessment of quality in
education - the way for

reputation building

Dumitru Dan BURDESCU

Software Engineering Department
University of Craiova

Romania



Acknowledgement

My colleague Cristian Mihaescu has made
an important contribution to this work
regarding:

- web application development (Tesys e-Learning
platform),

- machine learning algorithms adaptation and
integration

- Experiments design and analysis

2



3

E-Learning Definition

Elliott Masie - internationally recognized futurist,
analyst, researcher

(http://www.masie.com/elliott-masie.html)

“The use of technology to design, deliver, select,
administer, support and extend learning“

Percepsys - http://www.percepsys.com/

(canadian company)

“Using a technological means
(Internet/Intranet/Extranet) to access and manage
learning that supports and enhances the knowledge
of an individual”



E-Learning advantages

 No more expensive travel costs

 Less staff time wasted in travel

 Immediate availability

 Self-paced learning and increased confidence

 Instructional quality

 Instant feedback and scores

 Instant and less costly updates
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Obstacles in E-Learning

Human

 Organizational

 Cultural Resistance

 Instructional

Technological

 Bandwidth

 Interactivity

 Technology support

 Development costs
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E-Learning Challenges

Content Development Bottleneck

 –Long time to develop course

 –Existence of multi-dimensional skills - Web Team, Design
team, Learning standards, Instructional design

Infrastructure Problems

 High cost of purchase, implementation and deployment

 Problematic and incompatible features between disparate
systems

 Frequently -LMS, LCMS and Portal integration problems

 Difficult to measure activity, results and impact

QUALITY - Quality assessment and reputation building
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Measuring Quality

Road map:

- structure the materials (e.g. concept
maps)

- data - log performed activities

- algorithms - analyze performed activities

- process - produce valuable feedback and
conclusion regarding quality issues

7



8

Structuring a dicipline



Steps of a learning process
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Steps of learning process
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Integrating Machine Learning
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Concept Maps

 Two-dimensional, hierarchical diagrams that show
the structure of knowledge within a discipline

 Composed of concept labels, each enclosed in a
box or oval, a series of labeled linking lines and
general-to-specific organization.

 Concept map – diagrams indicating
interrelationships among concepts and
representing conceptual frameworks within a
specific domain of knowledge
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Concept Maps (cont.)

 CMap tools (IHMC) that we will use today

 C-TOOLS – Luckie (PI), University of Michigan NSF grant
available: http://ctools.msu.edu/ctools/index.html

 TPL-KATS – University of Central Florida (e.g., Hoeft, Jentsch,
Harper, Evans, Bowers, & Salas, 1990). TPL-KATS: concept
map: a computerized knowledge assessment tool. Computers in
Human Behavior, 19 (6), 653-657.

 SEMNET – http://www.semanticresearch.com/about/

 CMAT – Arneson & Lagowski, University of Texas,
http://chemed.cm.utexas.edu
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Concept Maps (cont.)

An Example of a Concept Map (Novak,
The Institute for Human and Machine Cognition)
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Activity monitoring

 Log4j utility

 Log4j.properties file

log4j.appender.R.File=D:/devel/Tomcat/idd.log

log4j.appender.R.MaxFileSize=1000KB

log4j.appender.R.MaxBackupIndex=5
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Activity monitoring (cont)

Field Description

id primary key

userid identifies the user who performed the action

date stores the date when the action was performed

action stores a tag that identifies the action

details stores details about performed action

level specifies the importance of the action

Structure of activity table
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Naive Bayes classifier

A naive Bayes classifier is a simple
probabilistic classifier based on applying
Bayes' theorem with strong (naive)
independence assumptions, or more
specifically, independent feature
model.
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Naive Bayes probability model

Graphical illustration

- a class node C at root, want P(C|F1,…,Fn)

- evidence nodes F - observed features as leaves

- conditional independence between all evidence

C

F1 F2 Fn……
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Naive Bayes probability model

The classifier is a conditional model

Following the Bayes’s rule strictly, we have

…..

Simplify this through conditional independence -

So the conditional distribution over the class C is

Z is constant given features
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Building Clusters from Data

 clustering - process of grouping a set of physical or
abstract objects into classes of similar objects

 we create clusters of users based on their activity.

 We have n objects and k clusters to form

 clusters are formed to optimize an objective
partitioning criterion (similarity function or distance )

 Step 1: Define a list of attributes

 Step 2: Compute attribute values for each student

 Step 3: Run iterative-based clustering algorithm
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Cluster’s parameters

• Sum of all probabilities for all clusters is 1.
• Knowing instances distribution in clusters we can
determine parameters
• Knowing parameters, we can determine the probability
that a given instance comes from a cluster
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EM algorithm

 We do not know the distribution that each training
instance came from, nor the parameters μ, σ or the
probability.

 Start with initial guess for the five parameters, use
them to calculate the cluster probabilities for each
instance

 Use these probabilities to re-estimate the parameters,
and repeat (“expectation-maximization” )

 “expectation” - The first step which computes cluster
probabilities;

 “maximization” - The second step, calculation of the
distribution parameters is of the likelihood of the
distributions given the data.
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EM algorithm (cont.)

 k-means algorithm stops when the classes of instances
don’t change from one iteration to the next – a “fixed
point” has been reached.

 The EM algorithm converges toward a fixed point

 We can see how close it is by calculating the overall
likelihood

 Overall likelihood is a measure of the “goodness” of
clustering and increases at each iteration of the EM
algorithm.

 Conclusion: iterate until the increase in log-likelihood
becomes negligible
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Decision Tree Induction Algorithm

 Decision trees “divide-and-conquer” approach

 The nodes from a decision tree imply testing
a certain attribute

 Creating a decision tree can be expressed in
a recursive way

 The most important thing is the order in
which the attributes are taken into
consideration
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Decision Tree Induction Algorithm

Algoritm: Generate_Decision_Tree: Creates a decision tree
Input : Instances with discrete attribute values
Output : Decision tree
Method :
(1) Create a node N ;
(2) if instances are all in same class C than
(3) return N – leaf node labeled with class C;
(4) if attribute list is empty than
(5) return N as leaf node labeled with most appropriate class;// majority voting;
(6) Select a test attribute , attribute with largest information gain
(7) Label node N with test attribute
(8) For each possible value of test attribute

//instance partitioning
(9) Create a branch for each test attribute;
(10) Let Si be the set of instances for which test attribute = ai //a partition
(11) if Si is empty than
(12) Create a leaf labeled with the most representative class.
(13) else create a node returned by Generate_Decision_Tree (Si, attribute list, test attribute)
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Decision trees

 Attributes:
AT = the average grade of taken tests for a student

NT = the number of taken tests for a student

TS = time spent for taking tests

 Classes:
A = the class of students that did not pass the exam

B = the class of students that passed the exam
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Sample decision tree



Experiments

 Define goal

 Define input data

 Choose algorithm and run experiment

 Obtain and interpret results

 Conclusions
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Experiment 1 – Naïve Bayes

Define goals:

 Improving learner’s proficiency

 Advise the learner regarding the resources
he should access and study
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Experiment 1 – Naïve Bayes

Define input data

For each attribute there is defined the set of nominal
values it may have

@relation activity
@attribute chapterId {1, 2, 3, 4}
@attribute noOfTests {1, 2, 3, 4, 5}
@attribute avgTests {1, 2, 3, 4, 5}
@attribute finalResult {1, 2, 3, 4, 5}
@attribute recommend {yes,no}
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Experiment 1 – Naïve Bayes

Define input data

The second section of the activity.arff file is
represented by the data itself.

@data
1, 1, 2, 3, no
1, 2, 3, 2, no
2, 3, 4, 3, yes
…..



31

Experiment 1 – Naïve Bayes
=== Run information ===
Scheme:
weka.classifiers.bayes.NaiveBayes
Relation: activity
Instances: 500
Attributes: 5

chapterId, noOfTests
avgTests, finalResult
recomend

Test mode: evaluate on training data
=== Classifier model (full training set) ===
Naive Bayes Classifier
Class yes: Prior probability = 0.38
chapterId: Counts = 35 62 92 85 (Total =
310)
noOfTests: Counts = 50 68 84 70 40 (Total
= 312)

avgTests: Counts = 60 55 80 74 43 (Total =
315)
finalResult: Counts = 40 72 82 80 36 (Total =
310)
Class no: Prior probability = 0.62
chapterId: Counts = 55 139 86 60 90 (Total =
420)
noOfTests: Counts = 50 141 81 85 88 (Total =
445)
avgTests: Counts = 52 132 90 79 94 (Total =
447)
finalResult: Counts = 52 102 100 89 104 (Total
= 447)

Detailed results
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Experiment 1 – Naïve Bayes

=== Evaluation on training set ===
=== Summary ===
Correctly Classified Instances 394 84.2105 %
Incorrectly Classified Instances 106 15.7895 %
Kappa statistic 0.6503
Mean absolute error 0.2078
Root mean squared error 0.3462
Relative absolute error 44.3346 %
Root relative squared error 71.7354 %
Total Number of Instances 500
=== Confusion Matrix ===
a b <-- classified as

92 81 | a = yes
25 302 | b = no

Detailed results
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Experiment 1 – Naïve Bayes

Conclusions

- The accuracy of over 84% is good

- This accuracy proves the concept: Naïve Bayes may
be used to recommend resources

- Further improvements need to be considered:
- Improve accuracy

- Take other attributes into consideration

- Use other granularities for considered attributes

- Personalize the recommendation system



Experiment 2 – EM Clustering

Define goals:

- Classify students

- Prove the classification power of an e-
Learning platform (assessment setup)
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Experiment 2 – EM Clustering

Define input data

//Sample activity.arff file
@relation activity

@attribute nLogings {<10,<50,<70,<100,>100}

@attribute nTests {<10,<20,<30,<50,>50}

@attribute nSentMessages {<10,<20,<30,<50,>50}
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Experiment 2 – EM Clustering

Define input data

//Sample activity.arff file
@data

<50,<20,<10,

<50,>50, <20,

<10,<20, <10,

<50,<10, <10,

<100,<50,<50,
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Experiment 2 – EM Clustering

 91 instances (34%) in cluster A,

 42 instances (16%) in cluster B and

 135 instances (50%) in cluster C.

Distribution of instances after EM algorithm



38

Experiment 2 – EM Clustering

Distribution of instances after EM algorithm with centroids



Experiment 2 – EM Clustering

Conclusions

- Quality of clustering: log-likelihood is -2.61092

- This accuracy proves the concept: clustering is a
good method for students classification

- Further improvements need to be considered:
- Improve accuracy

- Take/Add other attributes into consideration

- Use other granularities for considered attributes

- Define a procedure for giving advice such that a learner may
jump from one cluster to another
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Experiment 3 – Decision Trees

Define goals:

- Create classes students

- Advice students such that they may
pass from one class to another.
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Experiment 3 – Decision Trees

Define input data
//Sample activity.arff file

@relation activity

@attribute no_of_sessions {1,2,3,4,5}

@attribute mean_delay{1,2,3,4,5}

@attribute mean_session_lenth {1,2,3,4,5}

@attribute mean_no_of_actions {1,2,3,4,5}

@attribute no_of_tests {1,2,3,4,5}

@attribute no_of_messages {1,2,3,4,5}

@data

1,2,4,3,2,3,

2,1,3,1,3,4,

4,1,2,4,1,2,
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Experiment 3 – Decision Trees

Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: activity
Instances: 375
Attributes: 6
no_of_sessions, mean_delay,

mean_session_lenth, mean_no_of_actions,
no_of_tests, no_of_messages

Test mode: 10-fold cross-validation

Number of Leaves : 13
Size of the tree : 16
Time taken to build model: 0.13 seconds

=== Stratified cross-validation ===
Correctly Classified Instances 333 (88.8 %)
Incorrectly Classified Instances 42 (11.2 %)

J48 pruned tree
no_of_tests = <10: (60.0/1.0)
no_of_tests = <20
| no_of_sessions = <10 (20.0/2.0)
| no_of_sessions = <50 (53.0/2.0)
| no_of_sessions = <70 (12.0/2.0)
| no_of_sessions = <100 (10.0/2.0)
| no_of_sessions = >100 (5.0/2.0)
no_of_tests = <30 (40.0/1.0)
no_of_tests = <50
| no_of_sessions = <10 (2.0/2.0)
| no_of_sessions = <50 (31.0/2.0)
| no_of_sessions = <70 (63.0/2.0)
| no_of_sessions = <100 (22.0/2.0)
| no_of_sessions = >100 (7.0/2.0)
no_of_tests = >50 (50.0/1.0)
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Experiment 3 – Decision Trees

>100>100<10

<20

no_of_tests

1 no_of_sessionsno_of_sessions 7 13

2 3 5 6 84 11 129 10

<10

<30

>50

<10

Decision Tree:
13 leaves and 16 nodes
Time to build the model: 0.13 seconds
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Experiment 3 – Decision Trees

 At beginning, when the data was scarce, the
accuracy level was quite low, around 30-40%
of instances being correctly classified by
cross-validation.

 After three month of running the obtained
decision tree had 12 leaves (which represent
in fact classes) and 19 nodes
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Experiment 3 – Decision Trees

 Stratified cross-validation evaluation
technique revealed that :

 85% instances were correctly classified

 15% were incorrectly classified

 The results prove that obtained model
is accurate enough for starting issuing
recommendations.



Experiment 3 – Decision Trees

Conclusions

- Quality of classification: 85% correctly classified
instances

- This accuracy proves the concept: decision tree
induction is a good method for students classification

- Further improvements need to be considered:
- Improve accuracy: Take other attributes into consideration

- Use other granularities for considered attributes

- Define a procedure for giving advice such that a learner may
jump from one class to another
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Challenge 1: Integration

Integration of:

 Specific e-Learning platform

 Data Collection

 Machine Learning Algorithms

 Knowledge Management

 Feedback

 Metrics
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Challenge 2: Automation

Automation: Building a framework which
automatically:

 Gathers and manages data

 Runs Machine Learning Algorithms on data

 Manages obtained knowledge (i.e. a learner’s model)

 Produces output as desired: advice to learners/professors,
characterizes learners, characterizes platform, offers
statistics about questions, chapters, disciplines or students
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Solutions for challenges

Define a set of goals

Set of goals for learners
 Minimization of the time in which a certain level of

knowledge is reached. This is accomplished by specifying a
desired grade.

 Obtaining for sure a certain grade. The learner has to
specify the grade he aims for.

Course managers may choose from two goals:
 Having a normal distribution of grades at chapter level.

 Having a testing environment that ensures a minimum time
in which learner reaches a knowledge level for passing the
exam.
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Solutions for challenges

Define two sets of recommendations
For students:

 More study is necessary for chapter X.

 You may go to the next chapter.

 You need to take more tests at chapter X.

For course managers:

 At chapter X there are needed harder/easier
questions.

 At chapter X there are to few/many questions
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Solutions for challenges

Recommendation
Example: Overall goal of learner is to reach medium level of

knowledge

Learner is in class B:

medium performance in chapter 1

medium performance in chapter 2

minimum performance in chapter 3

minimum performance in chapter 4

Recommendation will be: “LITTLE MORE study in Chapter 3 and
MORE study in Chapter 4”.



Solutions for challenges
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Component Based Architecture of eLeTK
(e-Learning Enhancer Toolkit)



Solutions for challenges
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Integration of a LAS (Learner Adviser
Service) in an e-Learning system



Conclusions

 Data

 Need to be representative from quantity
and quality point of view

 Is obtained from a running system (an e-
Learning platform)

 Need to be (semi) structured

 Represents the INPUT
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Conclusions (cont.)

 Algorithms

 Need to be well chosen

 Must be fine tuned regarding the attributes
and their granularity

 Must provide sound knowledge

 Improve their results over time
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Conclusions (cont.)

 Analysis logic implementation

 Work as a service

 Have a component based infrastructure

 Perform as a toolkit along the e-Learning
platform that produces data with platform
specific setup
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Tesys e-Learning platform

Tesys e-Learning platform may be tested –
- as administrator:

http://apps.software.ucv.ro/tesys/servlet/tesys?admin=1

- as learner at:

http://apps.software.ucv.ro/tesys/servlet/tesys
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