# Intrusion Detection using Artificial Intelligence



Juan J. Flores
Universidad Michoacana
Morelia, Mexico



juanf@umich.mx

#### **Contents**

- Introduction
- Classification
- ANNs SOMs
- ANNs Multilayer Perceptrons
- Fuzzy Inference
- Hidden Markov Models (HMMs)
- Evolutionary Computation
- Agent-Based
- Conclusions

- security mechanisms of a system are designed so as to detect/prevent unauthorized access to system resources and data
  - Virus, denial of service, exploits, etc.
- Attempted or Ongoing attacks
- Data:
  - Confidentiality
  - Integrity
  - Availability

- increased connectivity
- more systems are subject to attack by intruders
- exploit flaws
  - operating system
  - application programs
- OS -> audit data
- 100 Mb/day
- Manual analysis unfeasible

- ID categories
  - Misuse vs. Anomaly
  - Network vs. Host
  - Passive vs. Reactive
- Protocol Anomaly
- Traffic Anomaly

#### Misuse Detection

- Attacks: pattern or signature
- Models based on malicious users
- Can detect many or all *known* attack patterns
- Of little use for unknown attack methods
- How to write a signature that encompasses all possible variations of a given attack



#### Anomaly Detection

- Models based on normal (activity profile) users
- All intrusive activities are necessarily anomalous
- States deviating significantly from normal are considered as intrusion attempts



#### Anomaly Detection Approaches

- Statistics
- Artificial Intelligence
  - ANNs SOMs
  - ANNs Multilayer Perceptrons
  - Fuzzy Inference
  - Hidden Markov Models (HMMs)
  - Evolutionary Computation
  - Agent-Based
- Hybrid

#### What to measure?

- Networking IP packets
- Ethereal
- tcpdump
- PCAP (libpcap)



• What to measure?

| Network Connection Features                  | Traffic Features                         |
|----------------------------------------------|------------------------------------------|
| Duration of connections                      | Count (# conn. to host past 2 secs)      |
| Protocol (TCP, UDP, etc.)                    | Serror (% conn. w/SYN errors)            |
| Service (hhtp, ssh, sftp, telnet, ftp, etc.) | Rerror (% conn. w/REJ errors)            |
| Flags                                        | Same_srv (% conn. to same service)       |
| Source bytes                                 | Diff_srv (% conn. to different service)  |
| Destination bytes                            | Srv_count (#conn. same serv.past 2 secs) |
|                                              | Srv_serror                               |
|                                              | Srv_rerror                               |
|                                              | Srv_diff_host                            |

Convert features to numbers (count, %, avg, etc.)

#### Classification

 Given a set of features the IDS determines if the observed behavior is normal, or what kind of a set of attacks is occurring.

The ID problem is then a classification problem.

#### **Artificial Neural Networks**

Neural Processing Unit - Neuron



#### **Artificial Neural Networks**

#### Feed Forward Architecture



#### **Artificial Neural Networks**

- Training/Validation Sets
- Normal/Abnormal examples of several classes of attacks
- Back Propagation Training

- SOMs are based on competitive learning.
- Kohonen's architecture is most common.
- Map an input signal of arbitrary dimensions to a 1- or 2-D output.
- Unsupervised learning.
- Input layer receives set of features.



- Given a pattern  $\mathbf{x} = [x_1, x_2, \dots, x_m]^T$
- Neuron j has weights

$$\mathbf{w}_{j} = [w_{j1}, w_{j2}, \dots, w_{jm}]^{T}, j = 1, 2, \dots, l$$

- Winning neuron  $i(\mathbf{x}) = \min_{j} ||\mathbf{x} \mathbf{w}_{j}||$
- Learning rule

$$\mathbf{w}_j(n+1) = \mathbf{w}_j(n) + \eta(n)h_{j, i(x)}(n) \left(\mathbf{x} - \mathbf{w}_j(n)\right)$$

3/6/10

- SOMs are not classifiers
- Clusters normal and abnormal traffic data.
- Sets of normal data records activate certain neurons.
- All other neurons indicate suspicious activity.

```
2
                                                        10
         16
                                 54
                                                  8490
    1700
10
               1511
                                      1900
```

# Algoritmos Genéticos

- Original
- Cruza
- Mutación





# Fenotipo y Genotipo



# Esquemas de Evolución



# Selección por Aptitud



Aptitud



Probabilidad

### Cruza





# Mutación

Original



• mutación con probabilidad = 0.1



 -1 1
 1
 0
 0
 0
 1
 0
 0
 1

# Ejemplo - Parábolas

$$y = ax^2 + bx + c$$

a b c



# Ejemplo - Parábolas

$$y = ax^2 + bx + c$$

a b c



# Ejemplo - Parábolas

$$y = ax^2 + bx + c$$

a b c



- Uncertainty in ID
  - ANNs
  - Fuzzy Classifiers
  - HMMs
  - Among others

- Fuzzy Linguistic Terms
- Fuzzy Rules
- Inference Mechanism
- Defuzzyfication



If src\_bytes is low and num\_access\_files is high then attack\_type is PAS



- Fuzzy version of expert Systems
- Rules
  - provided by expert
  - automatically learned (mined)
- Rule learning, GA, GP, etc.
- Given the set of rules, use GA to tune parameters

#### **Hiden Markov Models**

 An HMM is formed by a finite number of states connected by transitions.

 HMMs can generate an observation sequence depending on its transitions, and initial probabilities.

# Genetic Algorithms (GAs)

 Genetic Algorithms is a global search technique, that can be used to optimize the HMM parameters.

#### Framework For Evolving HMMs

 We start with a random population of Chromosomes

# Evolving HMMs



#### Results

 GAs evolved HMMs based on the observation sequence given by the network bandwith used at the UM.



# Results...

| Window | %    |                 |                 |  |
|--------|------|-----------------|-----------------|--|
| Size   | Hits | False Positives | False Negatives |  |
| 3      | 89   | 7               | 4               |  |
| 4      | 93   | 2               | 5               |  |
| 5      | 89   | 4               | 7               |  |
| 6      | 84   | 5               | 11              |  |



Probability Graphic of Window Size 4

3/6/10

# Agent-Based IDSs

- Each agent is an ID processor
  - Snort
- Platform for mobile agents
  - Morpheus
  - Jade
- Distributed sensors
- tcpdump
- Typically send alerts to a central processor
- Central processor integrates data
- More information → better discrimination

#### CONCLUSION

IDS are not even close to our wishes.

Work on hybridization of AI techniques

Work on representation and reasoning schemes

 Work on hybridization Misuse-Anomaly Detection

# FIN iGRACIAS!

juanf@umich.mx