

PANEL

Tendencies in Monitoring and Protecting Large (Cloud) Systems

Complexity

Three complementary views

- Infrastructure/Networking

monitoring, measurements, correlations

Petre DIN

- Applications/Services

protection-oriented design

- User ?
 - behavior

Lanes

- Traffic models
- Anomaly detection
- Measurements
- Policy/decision paradigms
- Protection
- System design
- Proofs, Validation
- User models

Small/medium/Big systems Dynamic/Static systems

Petre DINI

Barcelona 2010

Panelists

Panelists

 DongJin Lee, The University of Auckland, New Zealand

Petre DIN

- Florian Kammüller, TU-Berlin, Germany
- Petre Dini, Concordia University / IARIA

ICIMP 2010 (May 9 – 15 - 2010, Barcelona, Spain) Tendencies in Monitoring and Protecting Large (Cloud) Systems

Panel Discussion

Difficulties in understanding Internet traffic behaviours

DongJin Lee, PhD dongjin.lee@auckland.ac.nz

Department of Computer Science The University of Auckland New Zealand

Introduction

- Importance in Traffic Monitoring
 - [ISO] FCAPS: Fault, Configuration, Accounting, Performance, Security
 - "...If we don't measure it, we don't know what's happening.."
 - Interests by various groups of network operators
- Particular interests from commercial operators
 - Filling the bandwidth
 - Always-On-P2P traffic (and many others)
 - Choices of Increasing / restricting bandwidth
- Understanding traffic behaviours
 - Protocol trend analysis and Profiling
 - Prioritization and malicious detection, etc

Traffic behaviours

- Straightforward
 - Packet statistics (e.g., connections, size in bytes, duration)
 - Analyses (e.g., normal/abnormal traffic, bandwidth constraints)
- Method
 - Deep Packet Inspection (payload)
 - Behaviour Inspection (flows)
- Difficult
 - Complexity (e.g., protocol evolution, incorrect protocol)
 - Grey areas (e.g., In between yes/no, correct/Incorrect)

Discussion 1

- Deep Packet Inspection:
 - Accurate
 - Appliance
 - Privacy issues
 - Widely used (IDS, firewall)

- Behaviour Inspection:
 - Accurate and Increasing
 - Fast path
 - No privacy issue
 - Widely researched

Doubtful

- Accurate
- Processing demand
- Privacy issues (which layers?)
- Widely used (IDS, firewall)

Doubtful

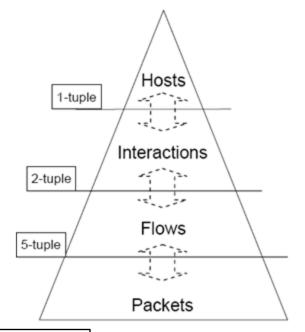
- Accurate enough?
- Can be processing demand
- Privacy issues with accuracy
- Just Research?

Fast, Cheap and Reliable (Pick Two)

Attributes (1)

Table 2: Discriminators and Definitions		
Number	Short	Long
1	Server Port	Port Number at server; we can establish server and
		client ports as we limit ourselves to flows for which we
		see the initial connection set-up.
2	Client Port	Port Number at client
3	$\min_{-}IAT$	Minimum packet inter-arrival time for all packets of
		the flow (considering both directions).
4	q1_IAT	First quartile inter-arrival time
5	med_IAT	Median inter-arrival time
6	mean_IAT	Mean inter-arrival time
7	q3_IAT	Third quartile packet inter-arrival time
8	max_IAT	Maximum packet inter-arrival time
9	var_IAT	Variance in packet inter-arrival time
10	min_data_wire	Minimum of bytes in (Ethernet) packet, using the size
		of the packet on the wire. [1]

- 248 discriminators (attributes), using *only* the packet and flow attributes
- Much more attributes to be extracted at higher level


[1] Andrew W. Moore, Denis Zuev, Michael Crogan "**Discriminators for use in flow-based classification**", Technical Report, RR-05-13, Department of Computer Science, Queen Mary, University of London, August, 2005, http://www.cl.cam.ac.uk/~awm22/publications/RR-05-13.pdf

Attributes (2)

- A single IP host can produce multiple *interactions,* e.g., [A -> B], [A -> C], [A -> D]
- Each interaction actually consists of multiple *flows,*

e.g., (A:80 -> B:2221) (A:80 -> B:2222) (A:80 -> B:2223)

- > packets to 5-tuple **flow** [srcIP, dstIP, srcPort, dstPort, Protocol]
- > 5-tuple flows to 2-tuple interaction [srcIP, dstIP]
- > 2-tuple interactions to 1-tuple (IP) host [srcIP]
- A lot more attributes if considering 'interactions' and 'hosts'
 - Especially important for profiling emerging applications

Discussion 2

- Difficulties in Behaviour inspection
 - Too many attributes / metrics
 - Too many algorithms / methodologies to perform
 - Too many technical / statistical tweaks
- Many should 'work' okay
 - Mix and match (hopefully it *should* work reasonably)
 - How many traffic patterns?
 - Trace selections (we may need 'Netflix'-like prize)
- Cats and Mice
 - Applications evolve, Detections evolve, Applications evolve...
 - Encryption (*everything*) the final solution? Then how to really profile?

Summary

- Difficulties in monitoring
 - Traffic classification (accuracy, how and what to use in attributes)
 - Meta traces for interest groups
- More difficulties (out of scope here)
 - Net Neutrality
 - '...don't touch my traffic...'
 - '...prioritizing streaming traffic...'
 - Privacy and Advertisement
 - '...we want to know about you...'
 - Non-intrusive approach ever possible?
- When to stop monitoring?
 - When nobody cares

1. Panel: Tendencies in Monitoring and Protection

Florian Kammüller

Institut für Softwaretechnik und Theoretische Informatik

ICIMP 2010 Barcelona 11. May 2010

My Angle on Monitoring and Protecting Large Cloud Systems

My field: (Formal) Security Engineering

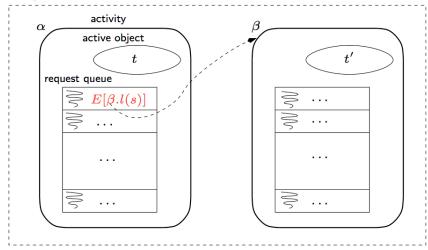
- Discipline to design and develop secure systems
- Methods: (Formal) Models
- III Need to Integrate Monitoring and Protection as Requirement

My Interest (see tomorrow's talk)

- Develop ASP_{fun} a calculus for
 - functional
 - active objects
 - distributed
 - plus typing
 - Formal language development in Isabelle/HOL
- ⇒ Good security properties
- → Privacy enforcement by restricting information flows
- \implies Prototype for ASP_{fun} in Erlang

ASP_{fun}– Asynchronous Sequential Processes – functional

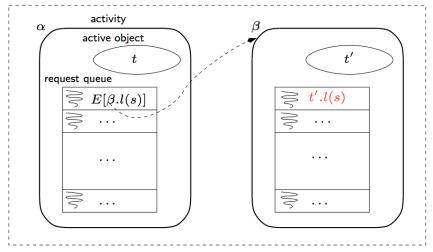
ProActive (Inria/ActiveEON): Java API for active objects



- New calculus ASP_{fun} for ProActive
- Asynchronous communication with Futures
 - · Futures are promises to results of method calls
 - Futures enable asynchronous communication
- ⇒ ASP_{fun} avoids deadlocks when accessing futures

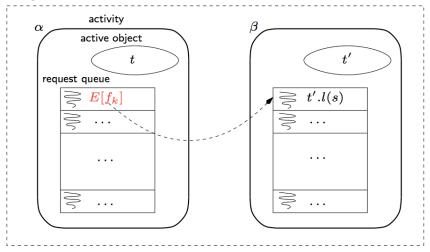
ASP_{fun}

ASP_{fun}: at a glance


configuration

ASP_{fun}

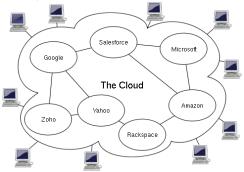
ASP_{fun}: at a glance


configuration

ASP_{fun}

ASP_{fun}: at a glance

configuration


Tendencies in Distributed Systems

Cloud computing should not be confused with the following models

- Client-server: basically any distributed application distinguishing service-providers and service-requesters
- Grid computing: distributed, parallel computing; super-computer is a loosely coupled cluster
- Peer-to-peer: distributed architecture, no central coordination, participants can be suppliers and consumers (contrast client-server)

Cloud computing

- Idea: Rent usage of physical infrastructure from providers
- Architecture: cloud components communicate via API's, usually Web services.

 \implies Grid \subseteq Cloud \subseteq P2P

Cloud Security

Security Issues associated with the cloud, three general areas (Wikipedia)

- Security and Privacy
 - Data protection
 - Identity management
 - Physical and personnel security
 - Availability
 - Application security (firewall, auditing)
- Compliance
- Legal and contractual issues

Positioning

Clouds give up on physical location of computing: How can we guarantee security goals?

- Security goals: their usual Enforcement \implies New problems
 - Integrity (authentication, data integrity): Security portocols, Cryptography, physical protection
 - \implies Key distribution (Identity of a provider)
 - Confidentiality : Cryptography, physical protection
 - \implies Where do we keep keys?
 - nonrepudiation (legal issues): Audit trails, logs
 - \implies Where do we (physically) keep logs?

Cloud computing is between Grid and Peer-to-Peer: no physical protection, (much less) security