

PANEL - ICDT, CTRQ, MOPAS

Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

INTRODUCTION

Eugen Borcoci, University Politehnica Bucharest

PANEL – ICDT, CTRQ, MOPAS Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Moderators: Michel Diaz, LAAS-CNRS - Toulouse, France Eugen Borcoci, University Politehnica of Bucarest, Romania

Panelists:

Andrei Alexandru Enescu, University Politehnica of Bucharest, Romania António Nogueira, University of Aveiro, Portugal Elena Troubitsyna, Abo Akademi University, Finland Michel Diaz, LAAS-CNRS - Toulouse, France Eugen Borcoci, University Politehnica of Bucarest, Romania

Q/As

- Short presentations:
 - Andrei Alexandru Enescu: MIMO systems, their impact on digital communication systems and issues regarding complexity of implementation.
 - António Nogueira: Traffic and network modeling
 - Elena Troubitsyna: Model-driven development of fault tolerant communication systems
 - Michel Diaz : Overlays, Intelligent ad-hoc networks, Embedded networked systems
 - Eugen Borcoci: Telecommunication and Future Internet Convergence Challenges

Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Michel Diaz

NexComm Panel

Athens June 2010

Main Open Questions

- High level network Overlays
- New intelligent ad-hoc networks

Embedded Networked Systems

High level network Overlays

• Overlays

- Do not follow the provider (physical) routing
- Build a virtual new (higher level) layer
- Include reliability, user optimisation, etc
- Next generation of set-up up boxes
 - Very efficient
 - Shared by the provider and the user
 - Will be the next internet P2P equipment
 - What size and what functions can it provide ?

New intelligent ad-hoc networks

- Present ad-hoc networks are not related to applications
 - As much as possible Independent
 - Improvements from Bottom-Up cross-layering
 - New intelligent actors (e.g. robots) appear
- Can we drive protocols by applications
 - Excellent Correlation
 - Optimisation and Adaptation
 - Can we add Cognition to the protocols
 - Top Down cross-layering added to Bottom-Up

Embedded Networked Systems - Step 1 Reliable communication systems

- Formal Description techniques (Petri nets, Algebraic Calculus, Estelle, LOTOS, SDL,...) for ISDN networking
 - FDTs went to Embedded Systems that increase in complexity
- To come back to Networking needs
 - Abstract Models for wireless comm & protocols
 - Models for network Architectures (for layers)
 - Models for (part of) the QoS internet

Embedded Networked Systems - Step 2 New generation of ENS

- 1. Define a Next generation of mobile and dynamic Embedded Systems based on Ad-hoc networks
- **2. Handle Complexity of Ad-hoc networks**
 - Define the Certification properties needed for Embedded Systems
 - Develop Specification & Verification of Time constraints and Relialibility
 - Develop Code generation and certification (certifying the code, the compiler, etc)

CHALLENGES IN 4G COMMUNICATION SYSTEMS FEATURING MIMO SYSTEMS

Lect. Andrei Alexandru Enescu, Ph. D Politechnic University of Bucharest

CHALLENGES IN SIGNAL PROCESSING

• "MIMO" is the word of the day

• MIMO systems

- Beamforming
- Space-time coding
- Spatial multiplexing
- Any combination of the techniques above
- Fast decoding algorithms
 - Need for parallelism
- Radio interface... new tendencies?
 - OBSAI / CPRI
- Fast memory access
 - DDR3 / QDR ...?

MIMO TRENDS

Spatial multiplexing – increased throughput

Space diversity – increased coverage

Beamforminginterference mitigation

MIMO THROUGHPUT

• Spectral efficiency: $N_t \ge M$

- N_t = number of transmit antennas
- M = modulation intrinsic spectral efficiency (e.g. 1 b/s/Hz for QPSK ½, 5 b/s/Hz for 64QAM 5/6)
- Example: MIMO 4x4 + 256 QAM 7/8 => 28 b/s/Hz!
 560Mbps @ 20MHz bandwidth
- Some limitations will come from:
 - Training symbols
 - Implementation loss
 - Logical channels
- Who will carry all this throughput??
 - Fast DSPs
 - Fast digital interfaces (radio interfaces)
 - Rapid memory access

MIMO ALGORITHMS

- ML algorithms used for decoding have to deal with codewords of $2^M \ge N_t$
 - 256QAM with $4x4 \Rightarrow 256^4$ possibilities $=2^{32}$ codewords (~= 2E+9 search space!!)
- MMSE and ZF algorithms exhibit tremendous implementation loss especially for large N_t
- Find hybrid solutions
 - Quasi-ML: Sphere decoders
 - Implementation-oriented algorithms (parallel features)

PANEL : ICDT CTRQ MOPAS

Tendencies and Challenges in Signal Processing, Modeling and Telecommunications

Telecommunication and Future Internet Convergence Challenges

Eugen Borcoci, University Politehnica Bucharest

• FACTS

- Telecommunication and Internet convergence- recognized and developed last 15 years
 - Full service integration- based on packet networks support and layered architectural stack
 - Intelligent terminals
 - Flexible IP –based transport
- Future Internet hot topic in discussion
- How to evolve?
 - Evolution
 - Revolution
 - Something in the middle?
- How the Telecom "world" will participate in this initiative ?
- Many efforts to define/re-define the future directions of FI (seen from different point of views): Research groups, Academia, Industry, Standardization organizations, Governments, Users, ...
 - Still there are many open FI issues, including discussion/revision of the basic concepts

- Telecommunication view
- Next Generation Networks Architecture (ITU-T, ETSI, 3GPP)
- NGN Evolution of Telecom Networks (>2000)

NGN

- packet-based, broadband network
- **provides Telecommunication** *multiple services*
- QoS-enabled transport technologies
- service-related functions are independent from underlying transport-related technologies.
- flexible access for users to networks and to competing service providers and/or services of their choice.
- generalized mobility which will allow consistent and ubiquitous provision of services to users.
- Standardization actors: ATIS NGN FG, ITU-T NGN FG, ETSI TISPAN, 3GPP, etc.

- Telecommunication view
- Key requirements satisfied by the NGN Architecture
 - Trust and security:
 - Operator should be able to trust the network.
 - User should be able to trust the operator
 - Reliability: Users should find it reliable
 - Availability: Network should always be available
 - Quality: Able to control and guarantee the Quality of the Services
 - Accountability: Determine usage of the Service
 - Legal: Comply with laws in the local jurisdictions
 - Generalized Mobility and services support
 - Note: Classical and current Internet only partially respond in very controllable manner to the above requirements

- Telecommunication view
- NGN example:
- 3GPP release 6, 7, etc. : IP Multimedia Subsystem IMS
 - telecomm. network for broadband fixed and mobile access
 - facilitates convergence of networks and services
 - enables different business models across access, core network and service domains
 - Is an IP based network
 - Session Initiation Protocol (SIP) and family are used for call & session control
 - enables any IP access to Operator IMS, from Mobile, Home, Enterprise domain
 - enables service mobility
 - enables interworking towards circuit switched networks
 - maintains Service Operator control for IMS signaling & media traffic.

Telecommunication view

NGN high level view of the architecture

- Some questionable features Wall gardened- style (e.g. IMS) (restricted "democracy"??) Do not mix the transport and application Very complex architecture: many GWs,

 - Not enough flexible.

Telecommunication and Future Internet Convergence Challenges

- Future Internet
 - Current Internet:
 - Some Critics:
 - Victim of its own success
 - Ossification (TCP/IP invariants)
 - Too many patches (routing, mobility, security, signalling, ...)
 - Location/Identity unit
 - Neutral character of the network??
 - Low security and trust
 - Not powerful enough management and control
 -see key features that NGN pretends to fulfill

Telecommunication and Future Internet Convergence Challenges

Future Internet

Needs/trends to be answered (partial list)

Connectivity

- Very high rate throughput- E2E, ubiquitous good/cheap network access
- Universal connectivity of devices, coupling of virtual world data with physical world information (RFID, sensors)
- Mobility needs (micro, macro, terminal/ session, network mobility)

Security and trust

Need for much more security, trust privacy, anonymity capabilities

New services aspects:

- VoIP, P2P-based, IPTV, 3D, composable services, ...
- User generated content and services, User controlled infrastructure,
- Novel human-computer interaction techniques
- Personalized services will become widespread on the FI.
- Serrvice-centric aware, content centric aware
- Computing and software as a network-centric service.

Management and control

- Negotiated management and control of resources, negotiated SLA's
- More need for Availability, reliability, and dependability

Future Internet

KEY issues on FI concepts and design:

- evolution? or clean slate approach? or something in the middle?
- Source: Petri Mahönen, Project Coordinator, EIFFEL, RWTH Aachen University" Evolved Internet Future for European Leadership (EIFFEL)", FI Conference, Bled, 2008

Future Internet

Telecommunication and Future Internet Convergence Challenges

- FI Initiatives:
- Europe
 - Networked European Software and Sevices Initiative
 - FIRE (Future Internet Research and Experimentation)
 - FP&, ... research programs
 - Management and Service-aware Networking Architectures (MANA) for Future Internet
 - Forum of Member States, the "Future Internet Forum"
 - National level initiatives and programs oriented for FI (partial list): Belgium, France, Finland, Germany, Italy, Nederland, Spain, Sweden, UK, etc
 -
- USA- GENI/FIND of the NSF (originated ~10 years ago)
 - GENI Global Environment for Network Innovation
 - NetSE, Network Science and Engineering, launched in Sept. 2008
- Japan: "New Generation Network" initiative (NWGN) complemented with the creation of the NWGN promotion forum

- Example of a FI-oriented project:
- ALICANTE, 2010-2013, Integrated Project (IP): MediA Ecosystem

Deployment Through Ubiquitous Content-Aware Network Environments

- Applying new challenging concepts (Future Internet oriented) of
 - Content Aware Networking
 - Network Aware Application
- Proposal of a novel virtual Content-Aware Network (CAN) layer
 - as a part of a full layered architecture
 - focused, but not limited to, on multimedia distribution with Quality of Services (QoS) assurance
- The system supports on a flexible cooperation between
 - providers,
 - operators and end-users,
 - enabling users to access the offered multimedia services in various contexts and also to become private content providers.

ALICANTE project:

Architectural high level view

Thank you