ICCGI Panel Challenges in Handling Information Diversity

Moderator: John Terzakis Intel USA September 21, 2010 Valencia, Spain

Panelists

- Janet Kourik (Webster University, USA)
- Kyoko Iwasawa (Takushoku University, Japan)
- Antonio Navarro (Universidad Complutense de Madrid, Spain)
- Pierre Robillard (École Polytechnique de Montréal, Canada)

Topics & Discussion

- Janet presented on the volume of information available on the Internet and posed the question of how we determine what to trust.
- Kyoto presented on a compiler design
- Antonio presented on a problem at his university with accessing diverse information spread across three databases.
- Pierre presented the results of a study on how information is communicated (by socialization, by coordination, by cooperation and by collaboration—the highest percentage)

The Fifth International Multi-Conference on Computing in the Global Information Technology ICCGI 2010

Challenges in Handling Information Diversity

Pierre-N. Robillard

Département de génie informatique et de génie logiciel École Polytechnique de Montréal Montréal, Qc. Canada

Surname.Name@polymtl.ca

Ad hoc verbal information How useful is it?

Interactions Modes for Face-to-Face (FtF) Communications

Information Diversity

Socialization

Coordination

Cooperation

Collaboration

Challenging Questions

- Do we need to go global for all type of communications?
- How can we select the appropriate type of communications?

Diversity on compiling Compiler infrastructure

Kyoko Iwasawa Takushoku University Tokyo Japan

Diversity on compiler

Diversity of optimization

- Dataflow analysis VS program conversion
 Loop conversion, code motion etc.
- Data flow of Array elements VS address expression optimization
- Instruction reorder VS register allocation
- Inter-procedural analysis
- Machine independent VS machine dependent

Other problem

- Compiler development is difficult and complex, however it seems that there is a few novel and interesting technique ...(really?)
 - it looks traditional and conservative
- Young people tend to hesitate compiler's hard work (at least in Japan).
- Always new system needs their own compiler (especially embedded system)

COINS project (COmpiler INfraStructure)

- Every features of compiler are modularized (written by Java)
- Restructure each module (for optimization and parallelization)
- Common intermediate representation
 - Two levels
- Parallelizing features
- Retargetable

The COINS System

Written in Java from scratch

COINS's features

- HIR (High level Intermediate Representation)
- LIR (Low level Intermediate Representation)
- Parsers (source program --> HIR)
 - C, Fortran, Java(planed)
- Optimizers for HIR/LIR
 - data flow based (HIR/LIR)
 - SSA based (LIR)
- Parallelizers for HIR/LIR
 - HIR --> OpenMP
 - SIMD parallelization (LIR)
- Code generators (LIR --> machine code)
 - retargetable code generator
 - Sparc, Intel x86

Machine Description

Register Definition %i0 - %i5, %o0 - %o5, %i0 - %i7 (def *reg-l32* ((foreach @io (i o) (foreach @n (0 1 2 3 4 5) (REG I32 "%@io@n"))) int 32bits (foreach @n (0 1 2 3 4 5 6 7) (REG I32 "%l@n")))) Instruction Description LIR Spare (foreach (@op @code) ((ADD add) (SUB sub) (BAND and) (BOR or) (BXOR xor)) (defcode @code (SET I32 reg (@op I32 reg rc)) (asm `(@code, \$1, \$2, \$0)) rc: reg or const (cost 1))) cost of this instruction (foreach (@n @l) ((2 1) (4 2) (8 3) (16 4) (32 5)) ;; mult by shift (defcode mul-sll@l (SET I32 reg (MUL I32 reg (INTCONST I32 @n))) (asm `(sll ,\$1 (con @l) ,\$0)) con @l = 1, 2, 3, 4, or 5 (cost 1)))

Example of Code Generation

(foreach (@n @l) ((2 1) (4 2) (8 3) (16 4) (32 5)) (defcode mul-sll@l (SET I32 reg (MUL I32 reg (INTCONST I32 @n))) (asm`(sll ,\$1 (con @l) ,\$0)) (cost 1)))

LIR: (SET:I32 %I2 (MUL:I32 %I3 (INTCONST:I32 4)))

Examples of retargeting

Machine	Coded Lines	Months	Note
SPARC	1952	<u> </u>	not available
x86	2533	<u> </u>	not available
MIPS	2207	3	nonexperienced student
SH4	3596	6	nonexperienced student
ARM	3052	6	nonexperienced
ARM-Thumb	1980	3	nonexperienced
MicroBlaze	1383	2	experienced
Power PC	5018	6	nonexperienced student
Alpha	1216	2	nonexperienced student

Execution time ratio (SPEC2000, x86)

Execution time ratio compared to COINS -00 (no optimization option)

Please see <u>www.coins-project.org</u> →[English Top] (www.coins-project.org/international/index.htm)

Challenges in Handling Information Diversity

Janet L. Kourik, Ph.D. Webster University, St. Louis, Missouri

Growth of Data

Data

- Data growing rapidly
- Petabytes and exabytes
- Challenge to find meaning
- What tools do we use?

Unstructured Text

- Difficult to find meaning in text
- Techniques emerged 15 years
- Storage formats, metadata, complex data types., etc.

Questions

- How determine quality of sources/input?
- What tools or concepts can we bring to the task?
- How can we help people make good judgments about the information?

Information Diversity in the UCM Virtual Campus

Antonio Navarro

Dpto . Ingeniería del Software e Inteligencia Artificial Universidad Complutense de Madrid (UCM) anavarro@fdi.ucm.es

Index

- UCM Virtual Campus
- Information diversity
- Information diversity in the UCM Virtual Campus
- Conclusions

UCM Virtual Campus

- UCM Virtual Campus is a large virtual campus:
 - More than 44,000 students registered (51%)
 - More than 3,500 lecturers registered (56%)
- Three Course Management Systems (CMSs) are available and integrated:
 - WebCT 4.1
 - Moodle 1.9.2
 - Sakai 2.4.0

UCM Virtual Campus

UCM CV software archnitecture

Information diversity

- At least, there are two types of information diversity:
 - Structural (abstract syntax)
 - eg: <!ELEMENT book (title, author, description)>
 <!ELEMENT book (title, author)>
 - Syntactical (concrete syntax)
 - eg: <!ELEMENT book (title, author)>

Information diversity in UCM VC

• Structural diversity

Conclusions

- Information diversity mean problems
 - Syntactical diversity mean *medium* problems
 - Structural diversity mean big problems
- Structural diversity in the UCM VC is one of the biggest problems
- CMS integration is the other big problem

Information Diversity in the UCM Virtual Campus

Antonio Navarro

Dpto . Ingeniería del Software e Inteligencia Artificial Universidad Complutense de Madrid anavarro@fdi.ucm.es