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Motivation

Planetary rovers are particular autonomous systems that usually:

@ receive an activity sequence from Earth operators
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Motivation

Main Challenges:

® the activity sequence (plan) must be very precise in order to
optimise mission time and energy consumption

® the system dynamics is usual continuous and nonlinear (also in a
simplified setting), and nonlinearity is still an open problem for
many planners.
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State of the Art

Many planners and techniques have been proposed to deal with
“planning with time and resources consumption”.
Non-optimal planners:

@ MAPGEN [Bresina et al. 2005]: the user provides the planner with a
qualitative evaluation of the generated plans;
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State of the Art

Many planners and techniques have been proposed to deal with
“planning with time and resources consumption”.
Non-optimal planners:

@ MAPGEN [Bresina et al. 2005]: the user provides the planner with a
qualitative evaluation of the generated plans;
@ ASPEN [Chien el al. 2000]: the plan is iteratively refined to fulfill the
constraints.
Optimal planners:

@ TM-LPSAT [Shin&Davis 2005] and UPPAAL/T|GA [Berhmann 2007]:
can handle only linear domains;

@ MIPS [Edelkamp&Helmert 2001] manages hybrid systems but does
not perform well with nonlinearity due to the use of symbolic
model checking.
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Planning through Explicit Model Checking

Model Checking refers to algorithms and tools which take in input the
formal specification of a system S and of a property ¢ and return true if
 is satisfied by S, or return false and give a counterexample otherwise.
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Explicit Model Checking works well on nonlinear systems.
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Planning through Explicit Model Checking

Model Checking refers to algorithms and tools which take in input the
formal specification of a system S and of a property ¢ and return true if
 is satisfied by S, or return false and give a counterexample otherwise.
An Explicit Model Checker:

© Obtains the transition graph of the system S

© Computes the reachable states, starting from the initial states

© Verifies  on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as
a plan generator.
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Contribution

We have used UPMurphi to automatically generate plans to:

@ model Mars environmental conditions;
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Contribution

We have used UPMurphi to automatically generate plans to:
@ model Mars environmental conditions;

@ model the rover dynamics (expressed by Ordinary Differential
Equations);

@ control rover's engine to move it for a specific distance, while
satisfying system constraints and minimising both time and
power consumption.
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The Autonomous Planetary Lander

@ The rover is equipped with batteries, solar panels and very limited
communication and computational resources
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The Autonomous Planetary Lander

@ The rover is equipped with batteries, solar panels and very limited
communication and computational resources

@ During each communication session, the Earth control sends to the
rover a plan to drive it to the next place and perform an activity;

@ The rover has no error recovery procedure: when something
unexpected happens, it stops and waits for Earth instructions

The rover has to move for df,,; meters minimizing time and power
consumption.
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System Dynamics - real data from

@ The rover requires energystandp, Joule/second energy to power the

CPU:;
@ The rover dynamics is given by the following:

v _ -
B " 0
where:

a(t) is the acceleration given by the rover engine at time t

Della Penna, Intrigila, Magazzeni, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study
0®00

System Dynamics - real data from

@ The rover requires energystandp, Joule/second energy to power the

CPU:;
@ The rover dynamics is given by the following:

v _ — -
B W
where:

1 is the kinetic friction coefficient of the rover wheels.
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System Dynamics - real data from

@ The rover requires energystandp, Joule/second energy to power the
CPU;

@ The rover dynamics is given by the following:

™ — at)—p-
B 0

@ the energy required to move the wheels with speed v and
acceleration v is given by [Tate&Boyd 2000]:

f(v,f/):(%-p~v2-Cd-fa+m-g~(Crr—l—é))-v (2)

where:
p is the Mars’ air density;
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@ The rover requires energystandp, Joule/second energy to power the
CPU;

@ The rover dynamics is given by the following:

™ — at)—p-
B 0

@ the energy required to move the wheels with speed v and
acceleration v is given by [Tate&Boyd 2000]:

f(v,f/):(%-p~v2-Cd-fa+m-g~(Crr—l—é))-v (2)

where:
g is the Mars’ gravitational constant;

Della Penna, Intrigila, Magazzeni, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study
0®00

System Dynamics - real data from

@ The rover requires energystandp, Joule/second energy to power the

CPU:;
@ The rover dynamics is given by the following:

o H(t)—p-
Bl "t 0

@ the energy required to move the wheels with speed v and
acceleration v is given by [Tate&Boyd 2000]:

f(v,|'/):(%-p~v2-Cd-fa+m-g-(CrrJré))-v (2)

where:
fa is the frontal area of the rover;
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System Dynamics - real data from

@ The rover requires energystandp, Joule/second energy to power the
CPU;

@ The rover dynamics is given by the following:

™ — at)—p-
B 0

@ the energy required to move the wheels with speed v and
acceleration v is given by [Tate&Boyd 2000]:

f(v,f/):(%-p~v2-Cd-fa+m-g~(Crr—l—é))-v (2)

where:
Cd,Crr are drag and rolling coefficients of the rover;

Della Penna, Intrigila, Magazzeni, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study
0080

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;

Della Penna, Intrigila, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study
0080

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;

Della Penna, Intrigila, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study
0080

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

Della Penna, Intrigila, Mercorio Planning for Autonomous Planetary Vehicles

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study Expe enta esults Conclusions
[ele] lo}

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey
the following constraints:
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Continue: continue with constant acceleration.
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the following constraints:

@ the rover speed must not exceed vpaxcm/s;
@ the rover must stop every dna.x meters to perform a cooling task
(needed to cool the rover’s instruments);

Della Penna, In i Planning for Autonomous Planetary Vi

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study Expe enta esults Conclusions
[ele] lo}

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey
the following constraints:

@ the rover speed must not exceed vpaxcm/s;

@ the rover must stop every dna.x meters to perform a cooling task
(needed to cool the rover’s instruments);

@ each cooling task lasts t. seconds and requires energycooling
Joule/second;

Della Penna, In i Planning for Autonomous Planetary Vi

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study Expe enta esults Conclusions

[e]e] le)

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey
the following constraints:

@ the rover speed must not exceed vpaxcm/s;

@ the rover must stop every dna.x meters to perform a cooling task
(needed to cool the rover’s instruments);

@ each cooling task lasts t. seconds and requires energycooling
Joule/second;

@ after d,, meters the battery charge must be higher than cpmip
Coulomb;

Della Penna, In i Planning for Autonomous Planetary Vi

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study Expe enta esults Conclusions

[e]e] le)

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey
the following constraints:

@ the rover speed must not exceed vpaxcm/s;

@ the rover must stop every dna.x meters to perform a cooling task
(needed to cool the rover’s instruments);

@ each cooling task lasts t. seconds and requires energycooling
Joule/second;

@ after d,, meters the battery charge must be higher than cpmip
Coulomb;

@ the goal must be achieved in at most t,,x seconds.

Della Penna, In i Planning for Autonomous Planetary Vi

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Case Study Expe enta esults Conclusions

[e]e] le)

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by 1.5cm/s?;
Decelerate: decrease acceleration by 1.5cm/s?;
Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey
the following constraints:

@ the rover speed must not exceed vpaxcm/s;

@ the rover must stop every dna.x meters to perform a cooling task
(needed to cool the rover’s instruments);

@ each cooling task lasts t. seconds and requires energycooling
Joule/second;

@ after d,, meters the battery charge must be higher than cpmip
Coulomb;

@ the goal must be achieved in at most t,,x seconds.

Della Penna, In i Planning for Autonomous Planetary Vi

The Sixth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Planning through Explicit Case Study Experir al Results Conclusions
felelel }

System Constraints

There are essentially two failure conditions:

Engine blown: when the speed exceeds viax, the entire mission fails;
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System Constraints
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Engine blown: when the speed exceeds viax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;
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There are essentially two failure conditions:

Engine blown: when the speed exceeds viax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(sj, a;) evaluates the cost of a single plan step
(considering time and energy).
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There are essentially two failure conditions:

Engine blown: when the speed exceeds viax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(sj, a;) evaluates the cost of a single plan step
(considering time and energy).
For each state s; and for each action a;, C(s;, a;):
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System Constraints

There are essentially two failure conditions:

Engine blown: when the speed exceeds vimax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(s;, a;j) evaluates the cost of a single plan step
(considering time and energy).
For each state s; and for each action a;, C(sj, a;):

2
energystandby

tmax—1

when the rover is stopped;
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System Constraints

There are essentially two failure conditions:

Engine blown: when the speed exceeds vimax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(s;, a;j) evaluates the cost of a single plan step
(considering time and energy).
For each state s; and for each action a;, C(sj, a;):

2
(ene’gystandby +energycooling )

tmax—1

when the rover is in a cooling phase;
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System Constraints

There are essentially two failure conditions:

Engine blown: when the speed exceeds vimax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(s;, a;j) evaluates the cost of a single plan step
(considering time and energy).
For each state s; and for each action a;, C(sj, a;):

(energystandby+f(viaVi))2

tmax—1

when the rover is moving.
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System Constraints

There are essentially two failure conditions:

Engine blown: when the speed exceeds vimax, the entire mission fails;
No energy: if the energy becomes less than cpin, the rover stops and
uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function C(s;, a;j) evaluates the cost of a single plan step
(considering time and energy).
For each state s; and for each action a;, C(sj, a;):

0 if the rover triggers failure conditions;
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Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;
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Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;
@ All real variables were rounded up to first decimal digit;
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Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;

@ All real variables were rounded up to first decimal digit;

@ The number of different systems states, with the given variable
approximation, is 2.2 x 10'3;
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Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;

@ All real variables were rounded up to first decimal digit;

@ The number of different systems states, with the given variable
approximation, is 2.2 x 10'3;

@ However, UPMurphi found that only 939,447 states were
actually reachable
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Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;

@ All real variables were rounded up to first decimal digit;

@ The number of different systems states, with the given variable
approximation, is 2.2 x 10'3;

@ However, UPMurphi found that only 939,447 states were
actually reachable

@ UPMurphi sythesised the optimal plan (w.r.t. the given cost
function) in 2,257 seconds with a peak memory requirement of
500 MB;
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Experimental Results
°0

Optimal Planning

@ In our experiment, we set dg,, = 2m, tmax = 60s and
Cmin = 1,000C;

@ All real variables were rounded up to first decimal digit;

@ The number of different systems states, with the given variable
approximation, is 2.2 X 1013;

@ However, UPMurphi found that only 939,447 states were
actually reachable

@ UPMurphi sythesised the optimal plan (w.r.t. the given cost
function) in 2,257 seconds with a peak memory requirement of
500 MB;

@ Optimisation allowed us to save 922, 7C w.r.t. the required
minimal battery charge cmjn, and 17s w.r.t. the maximum
allowed plan duration ..
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t = 0 the rover battery starts with 18,000C of charge and
with v=0,v=0
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Optimal Plan Evolution
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t =5 during first 5 seconds the rover consumes a lot of
energy to increase its speed
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Optimal Plan Evolution
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5 < t < 22 the rover reduces its speed to avoid an “engine blown”
failure
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Optimal Plan Evolution

Legend
Speed [cm/s]
Acceleration [cm/sz]
State of Battery [C]
— 18000 T T T
=)
£ 17990 | —
°
3 17980 | cooling 1
S 17970 | g
§ 17960 - ]
8 17950 | g
S 17940 q
L
§ 17930 [ g
17920
10
44 _
8 A
I cooling 12 §
£ 6 S,
S, 1o §
FEA / £
2 o}
o L}
%) 22 @
2f g
-4
0 L L L L L I L
0 5 10 15 20 25 30 35 40
time [s]

22 < t < 25 the rover increases its speed again

Della Penn Magazzeni, Mercorio Planning for Autonomous Planetary Ve

xth International Conference on Autonomic and Autonomous Systems - ICAS 2010



Experimental Results
oe

Optimal Plan Evolution
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25 < t < 29 the rover brakes and stops to perform a cooling task
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Optimal Plan Evolution
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29 < t < 35 the rover performs a cooling task
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Optimal Plan Evolution
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35 < t < 43 the rover covers the remaining distance to the goal.
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Conclusions

We showed how an explicit model checking based planner, namely
UPMurphi, can be used to
@ create a quite realistic model of a planetary rover (preserving
its complex, nonlinear dynamics);
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Conclusions

We showed how an explicit model checking based planner, namely
UPMurphi, can be used to
@ create a quite realistic model of a planetary rover (preserving
its complex, nonlinear dynamics);

@ generate time and resource-optimal plans to control rover
engine;
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Planning through Explicit Case Stud Experir al Results Conclusions

Conclusions

We showed how an explicit model checking based planner, namely
UPMurphi, can be used to

@ create a quite realistic model of a planetary rover (preserving
its complex, nonlinear dynamics);

@ generate time and resource-optimal plans to control rover
engine;
Thus, UPMurphi could be an useful tool to plan activities for
autonomous vehicles.
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