Planning for Autonomous Planetary Vehicles

Giuseppe Della Penna*, Benedetto Intrigila[†], Daniele Magazzeni[‡], Fabio Mercorio^{*}

* Dept. of Computer Science, University of L'Aquila
 † Dept. of Mathematics, University of Rome "Tor Vergata"
 [‡] Dept. of Science, University of Chieti

March 9, 2010

Introduction	Planning through Explicit Model Checking 000	Case Study	Experimental Results	Conclusions
Outline				

3 Case Study

4 Experimental Results

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Outline				

- 2 Planning through Explicit Model Checking
- 3 Case Study
- 4 Experimental Results

5 Conclusions

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ●୦୦	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

- receive an *activity sequence* from Earth operators
- move on an unknown, hazardous terrain up to a specific position;
- perform some activities, e.g., acquire data;
- all of this, while dealing with strict time and resource (especially energy) constraints.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ●○○	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

- receive an *activity sequence* from Earth operators
- move on an unknown, hazardous terrain up to a specific position;
- perform some activities, e.g., acquire data;
- all of this, while dealing with strict time and resource (especially energy) constraints.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ●○○	Planning through Explicit Model Checking 000	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

- receive an *activity sequence* from Earth operators
- move on an unknown, hazardous terrain up to a specific position;
- perform some *activities*, e.g., acquire data;
- all of this, while dealing with strict time and resource (especially energy) constraints.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ●୦୦	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

- receive an *activity sequence* from Earth operators
- move on an unknown, hazardous terrain up to a specific position;
- perform some *activities*, e.g., acquire data;
- all of this, while dealing with strict time and resource (especially energy) constraints.

Introduction ●୦୦	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

- receive an *activity sequence* from Earth operators
- move on an unknown, hazardous terrain up to a specific position;
- perform some *activities*, e.g., acquire data;
- all of this, while dealing with strict time and resource (especially energy) constraints.

Introduction ○●○	Planning through Explicit Model Checking 000	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

Main Challenges:

© the activity sequence (plan) must be very precise in order to optimise mission time and energy consumption

It the system dynamics is usual continuous and nonlinear (also in a simplified setting), and nonlinearity is still an open problem for many planners.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ○●○	Planning through Explicit Model Checking 000	Case Study 0000	Experimental Results	Conclusions
Motiva	tion			

Main Challenges:

(c) the activity sequence (plan) must be very precise in order to optimise mission time and energy consumption

© the system dynamics is usual continuous and nonlinear (also in a simplified setting), and nonlinearity is still an open problem for many planners.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ○○●	Planning through Explicit Model Checking 000	Case Study	Experimental Results	Conclusions

Many planners and techniques have been proposed to deal with *"planning with time and resources consumption"*. Non-optimal planners:

- MAPGEN [Bresina et al. 2005]: the user provides the planner with a qualitative evaluation of the generated plans;
- ASPEN [Chien et al. 2000]: the plan is iteratively refined to fulfill the constraints.

Optimal planners:

- TM-LPSAT [Shin&Davis 2005] and UPPAAL/TIGA [Berhmann 2007]: can handle only *linear* domains;
- MIPS [Edelkamp&Heimert 2001] manages hybrid systems but does not perform well with nonlinearity due to the use of symbolic model checking.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ○○●	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions

Many planners and techniques have been proposed to deal with *"planning with time and resources consumption"*. Non-optimal planners:

- MAPGEN [Bresina et al. 2005]: the user provides the planner with a qualitative evaluation of the generated plans;
- ASPEN [Chien el al. 2000]: the plan is iteratively refined to fulfill the constraints.

Optimal planners:

- TM-LPSAT [Shin&Davis 2005] and UPPAAL/TIGA [Berhmann 2007]: can handle only *linear* domains;
- MIPS [Edelkamp&Helmert 2001] manages hybrid systems but does not perform well with nonlinearity due to the use of symbolic model checking.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction ○○●	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions

Many planners and techniques have been proposed to deal with *"planning with time and resources consumption"*. Non-optimal planners:

- MAPGEN [Bresina et al. 2005]: the user provides the planner with a qualitative evaluation of the generated plans;
- ASPEN [Chien el al. 2000]: the plan is iteratively refined to fulfill the constraints.

Optimal planners:

- TM-LPSAT [Shin&Davis 2005] and UPPAAL/TIGA [Berhmann 2007]: can handle only *linear* domains;
- MIPS [Edelkamp&Helmert 2001] manages hybrid systems but does not perform well with nonlinearity due to the use of *symbolic* model checking.

Planning for Autonomous Planetary Vehicles

Introduction ○○●	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions

Many planners and techniques have been proposed to deal with *"planning with time and resources consumption"*. Non-optimal planners:

- MAPGEN [Bresina et al. 2005]: the user provides the planner with a qualitative evaluation of the generated plans;
- ASPEN [Chien et al. 2000]: the plan is iteratively refined to fulfill the constraints.

Optimal planners:

- TM-LPSAT [Shin&Davis 2005] and UPPAAL/TIGA [Berhmann 2007]: can handle only *linear* domains;
- MIPS [Edelkamp&Helmert 2001] manages hybrid systems but does not perform well with nonlinearity due to the use of *symbolic* model checking.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 00●	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions

Many planners and techniques have been proposed to deal with *"planning with time and resources consumption"*. Non-optimal planners:

- MAPGEN [Bresina et al. 2005]: the user provides the planner with a qualitative evaluation of the generated plans;
- ASPEN [Chien et al. 2000]: the plan is iteratively refined to fulfill the constraints.

Optimal planners:

- TM-LPSAT [Shin&Davis 2005] and UPPAAL/TIGA [Berhmann 2007]: can handle only *linear* domains;
- MIPS [Edelkamp&Helmert 2001] manages hybrid systems but does not perform well with nonlinearity due to the use of *symbolic* model checking.

Introduction 000	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Outline				

Introduction

2 Planning through Explicit Model Checking

3 Case Study

4 Experimental Results

5 Conclusions

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- **()** Obtains the transition graph of the system S
- Omputes the reachable states, starting from the initial states
- Serifies φ on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
	000			

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- **()** Obtains the transition graph of the system S
- Computes the reachable states, starting from the initial states
 Verifies φ on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusion
	•00			

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- **()** Obtains the transition graph of the system S
- **2** Computes the reachable states, starting from the initial states
- ${f 0}$ Verifies arphi on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
	•00			

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- Obtains the transition graph of the system S
- **2** Computes the reachable states, starting from the initial states
- Verifies φ on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
	000			

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- \bigcirc Obtains the transition graph of the system S
- **2** Computes the reachable states, starting from the initial states
- Verifies φ on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
	000			

Model Checking refers to algorithms and tools which take in input the formal specification of a system S and of a property φ and return true if φ is satisfied by S, or return false and give a counterexample otherwise. An Explicit Model Checker:

- **()** Obtains the transition graph of the system S
- **2** Computes the reachable states, starting from the initial states
- Verifies φ on all reachable states.

Explicit Model Checking works well on nonlinear systems.

How to use a Model Checker as a Planner?

If we look at error states as goal states, we can use a model checker as a plan generator.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking ○●○	Case Study	Experimental Results	Conclusions

UPMurphi

Universal Planner based on CMurphi model checker

UPMurphi is able to:

- exploit real numbers and external C/C ++ functions to model complex systems;
- exploit several techniques (inherited from CMurphi) that help to mitigate well-known *state explosion* problem;
- reduce memory usage through bit compression and hash compaction

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking ○●○	Case Study 0000	Experimental Results	Conclusions

UPMurphi

Universal Planner based on CMurphi model checker

UPMurphi is able to:

- exploit real numbers and external C/C ++ functions to model complex systems;
- exploit several techniques (inherited from CMurphi) that help to mitigate well-known *state explosion* problem;
- reduce memory usage through bit compression and hash compaction

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking ○●○	Case Study 0000	Experimental Results	Conclusions

UPMurphi

Universal Planner based on CMurphi model checker

UPMurphi is able to:

- exploit real numbers and external C/C ++ functions to model complex systems;
- exploit several techniques (inherited from CMurphi) that help to mitigate well-known *state explosion* problem;
- reduce memory usage through *bit compression* and *hash compaction*

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking ○●○	Case Study 0000	Experimental Results	Conclusions
11014				

UPMurphi

Universal Planner based on CMurphi model checker

UPMurphi is able to:

- exploit real numbers and external C/C ++ functions to model complex systems;
- exploit several techniques (inherited from CMurphi) that help to mitigate well-known *state explosion* problem;
- reduce memory usage through bit compression and hash compaction

Introduction	Planning through Explicit Model Checking ○●○	Case Study 0000	Experimental Results	Conclusions
11014				

UPMurphi

Universal Planner based on CMurphi model checker

UPMurphi is able to:

- exploit real numbers and external C/C ++ functions to model complex systems;
- exploit several techniques (inherited from CMurphi) that help to mitigate well-known *state explosion* problem;
- reduce memory usage through bit compression and hash compaction

Introduction	Planning through Explicit Model Checking ००●	Case Study	Experimental Results	Conclusions
Contrib	ution			

We have used UPMurphi to *automatically* generate plans to:

- model Mars environmental conditions;
- model the rover dynamics (expressed by Ordinary Differential Equations);
- control rover's **engine** to move it for a specific distance, while satisfying system constraints and minimising both time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking ○○●	Case Study 0000	Experimental Results	Conclusions
Contrib	ution			

We have used UPMurphi to *automatically* generate plans to:

- model Mars environmental conditions;
- model the rover dynamics (expressed by Ordinary Differential Equations);
- control rover's **engine** to move it for a specific distance, while satisfying system constraints and minimising both time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking ○○●	Case Study 0000	Experimental Results	Conclusions
Contrib	oution			

We have used UPMurphi to *automatically* generate plans to:

- model Mars environmental conditions;
- model the rover dynamics (expressed by Ordinary Differential Equations);
- control rover's **engine** to move it for a specific distance, while satisfying system constraints and minimising both time and power consumption.

Introduction	Planning through Explicit	Model Checking	Case Study	Experimental Results	Conclusions
Outline					

Introduction

2 Planning through Explicit Model Checking

3 Case Study

4 Experimental Results

5 Conclusions

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ●000	Experimental Results	Conclusions

- The rover is equipped with batteries, solar panels and very limited communication and computational resources
- During each communication session, the Earth control sends to the rover a plan to drive it to the next place and perform an activity;
- The rover has no error recovery procedure: when something unexpected happens, it stops and waits for Earth instructions

GOAL

The rover has to move for *d_{final}* meters minimizing time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ●○○○	Experimental Results	Conclusions

- The rover is equipped with batteries, solar panels and very limited communication and computational resources
- During each communication session, the Earth control sends to the rover a plan to drive it to the next place and perform an activity;
- The rover has no *error recovery* procedure: when something unexpected happens, it stops and waits for Earth instructions

GOAL

The rover has to move for d_{final} meters minimizing time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ●000	Experimental Results	Conclusions

- The rover is equipped with batteries, solar panels and very limited communication and computational resources
- During each communication session, the Earth control sends to the rover a plan to drive it to the next place and perform an activity;
- The rover has no *error recovery* procedure: when something unexpected happens, it stops and waits for Earth instructions

GOAL

The rover has to move for d_{final} meters minimizing time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ●000	Experimental Results	Conclusions

- The rover is equipped with batteries, solar panels and very limited communication and computational resources
- During each communication session, the Earth control sends to the rover a plan to drive it to the next place and perform an activity;
- The rover has no *error recovery* procedure: when something unexpected happens, it stops and waits for Earth instructions

GOAL

The rover has to move for d_{final} meters minimizing time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ●000	Experimental Results	Conclusions

- The rover is equipped with batteries, solar panels and very limited communication and computational resources
- During each communication session, the Earth control sends to the rover a plan to drive it to the next place and perform an activity;
- The rover has no *error recovery* procedure: when something unexpected happens, it stops and waits for Earth instructions

GOAL

The rover has to move for d_{final} meters minimizing time and power consumption.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles
Introduction	Planning through Explicit Model Checking 000	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

where:

a(t) is the acceleration given by the rover engine at time t

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking 000	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

where:

 μ is the kinetic friction coefficient of the rover wheels.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

$$\frac{\frac{\partial v}{\partial t}}{\frac{\partial d}{\partial t}} = a(t) - \mu \cdot g$$

$$\frac{\frac{\partial d}{\partial t}}{\frac{\partial t}{\partial t}} = v(t)$$
(1)

• the energy required to move the wheels with speed v and acceleration \dot{v} is given by [Tate&Boyd 2000]:

$$f(\mathbf{v}, \dot{\mathbf{v}}) = \left(\frac{1}{2} \cdot \rho \cdot \mathbf{v}^2 \cdot Cd \cdot fa + m \cdot g \cdot \left(Crr + \frac{\dot{\mathbf{v}}}{g}\right)\right) \cdot \mathbf{v}$$
(2)

where:

ho is the Mars' air density;

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

$$\frac{\frac{\partial v}{\partial t}}{\frac{\partial t}{\partial t}} = a(t) - \mu \cdot g$$

$$\frac{\frac{\partial d}{\partial t}}{\frac{\partial t}{\partial t}} = v(t)$$

$$(1)$$

• the energy required to move the wheels with speed v and acceleration \dot{v} is given by [Tate&Boyd 2000]:

$$f(\mathbf{v}, \dot{\mathbf{v}}) = \left(\frac{1}{2} \cdot \rho \cdot \mathbf{v}^2 \cdot Cd \cdot fa + m \cdot g \cdot \left(Crr + \frac{\dot{\mathbf{v}}}{g}\right)\right) \cdot \mathbf{v}$$
(2)

where:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

$$\frac{\frac{\partial v}{\partial t}}{\frac{\partial t}{\partial t}} = a(t) - \mu \cdot g$$

$$\frac{\frac{\partial d}{\partial t}}{\frac{\partial t}{\partial t}} = v(t)$$

$$(1)$$

• the energy required to move the wheels with speed v and acceleration \dot{v} is given by [Tate&Boyd 2000]:

$$f(\mathbf{v}, \dot{\mathbf{v}}) = \left(\frac{1}{2} \cdot \rho \cdot \mathbf{v}^2 \cdot Cd \cdot fa + m \cdot g \cdot \left(Crr + \frac{\dot{\mathbf{v}}}{g}\right)\right) \cdot \mathbf{v}$$
(2)

where:

fa is the frontal area of the rover;

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○●○○	Experimental Results	Conclusions

- The rover requires energy_{standby} Joule/second energy to power the CPU;
- The rover dynamics is given by the following:

$$\frac{\frac{\partial v}{\partial t}}{\frac{\partial t}{\partial t}} = a(t) - \mu \cdot g$$

$$\frac{\frac{\partial d}{\partial t}}{\frac{\partial t}{\partial t}} = v(t)$$

$$(1)$$

• the energy required to move the wheels with speed v and acceleration \dot{v} is given by [Tate&Boyd 2000]:

$$f(\mathbf{v}, \dot{\mathbf{v}}) = \left(\frac{1}{2} \cdot \rho \cdot \mathbf{v}^2 \cdot Cd \cdot fa + m \cdot g \cdot \left(Crr + \frac{\dot{\mathbf{v}}}{g}\right)\right) \cdot \mathbf{v}$$
(2)

where:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results	Conclusions

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed v_{max} cm/s;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning th	rough Explici	: Model Checking	Case Study 00●0	Experimental Results	Conclusions
~	~					

System Constraints

The commands that can be used to control to the rover engine are:

Accelerate: increase acceleration by $1.5 cm/s^2$; Decelerate: decrease acceleration by $1.5 cm/s^2$:

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$; Decelerate: decrease acceleration by $1.5 cm/s^2$; Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed v_{max} cm/s;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min}. Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study 00●0	Experimental Results	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed v_{max} cm/s;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study 00●0	Experimental Results	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results 00	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most *t_{max}* seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a *cooling task* (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results 00	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study ○○●○	Experimental Results 00	Conclusions
System	Constraints			

Accelerate: increase acceleration by $1.5 cm/s^2$;

Decelerate: decrease acceleration by $1.5 cm/s^2$;

Continue: continue with constant acceleration.

A correct plan (sequence of commands) for the rover engine must obey the following constraints:

- the rover speed must not exceed $v_{max} cm/s$;
- the rover must stop every d_{max} meters to perform a cooling task (needed to cool the rover's instruments);
- each cooling task lasts t_c seconds and requires energy_{cooling} Joule/second;
- after d_{final} meters the battery charge must be higher than c_{min} Coulomb;
- the goal must be achieved in at most t_{max} seconds.

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints			

Engine blown: when the speed exceeds v_{max} , the entire mission fails;

to energy: if the energy becomes less than *c_{min}*, the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit M	odel Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints			

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Mo	odel Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy).

For each state *s*; and for each action *a*;, *C*(*s*;,*a*;):

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit 1	Model Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit 1	Model Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

$$\frac{energy_{standby}^{2}}{t_{max}-i}$$
 when the rover is stopped;

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Me	odel Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

 $\frac{(energy_{standby} + energy_{cooling})^2}{t_{max} - i}$ when the rover is in a cooling phase;

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit 1	Model Checking	Case Study 000●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

$$\frac{(energy_{standby} + f(v_i, \dot{v}_i))^2}{t_{max} - i}$$
 when the rover is moving.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Mod	el Checking	Case Study ○○○●	Experimental Results	Conclusions
System	Constraints				

Engine blown: when the speed exceeds v_{max} , the entire mission fails; No energy: if the energy becomes less than c_{min} , the rover stops and uses the residual energy to wait for Earth instructions;

Plan evaluation function

The function $C(s_i, a_i)$ evaluates the cost of a single plan step (considering time and energy). For each state s_i and for each action a_i , $C(s_i, a_i)$:

0 if the rover triggers failure conditions;

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
Outline				

Introduction

2 Planning through Explicit Model Checking

3 Case Study

4 Experimental Results

5 Conclusions

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results ●○	Conclusions

Optimal Planning

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is 2.2×10^{13} ;
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7C w.r.t. the required minimal battery charge c_{min}, and 17s w.r.t. the maximum allowed plan duration t_{max}.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Che	ecking Case Stud 0000	ly Experimental F ●○	Results Conclusion	ons
Optima	l Planning				

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is 2.2×10^{13} ;
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7C w.r.t. the required minimal battery charge c_{min}, and 17s w.r.t. the maximum allowed plan duration t_{max}.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit	Model Checking	Case Study 0000	Experimental Results ●○	Conclusions
Optimal	l Planning				

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is $2.2\times 10^{13};$
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7*C* w.r.t. the required minimal battery charge *c_{min}*, and 17*s* w.r.t. the maximum allowed plan duration *t_{max}*.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit	Model Checking	Case Study 0000	Experimental Results ●○	Conclusions
Optimal	l Planning				

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is 2.2×10^{13} ;
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7*C* w.r.t. the required minimal battery charge *c_{min}*, and 17*s* w.r.t. the maximum allowed plan duration *t_{max}*.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit	Model Checking	Case Study 0000	Experimental Results ●○	Conclusions
Optimal	l Planning				

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is 2.2×10^{13} ;
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7*C* w.r.t. the required minimal battery charge *c_{min}*, and 17*s* w.r.t. the maximum allowed plan duration *t_{max}*.

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit	Model Checking	Case Study	Experimental Results ●○	Conclusions
Optima	Planning				

- In our experiment, we set $d_{final} = 2m$, $t_{max} = 60s$ and $c_{min} = 1,000C$;
- All real variables were rounded up to first decimal digit;
- The number of different systems states, with the given variable approximation, is 2.2×10^{13} ;
- However, UPMurphi found that only 939,447 states were actually reachable
- UPMurphi sythesised the optimal plan (w.r.t. the given cost function) in 2,257 seconds with a peak memory requirement of 500 MB;
- Optimisation allowed us to save 922,7C w.r.t. the required minimal battery charge c_{min} , and 17s w.r.t. the maximum allowed plan duration t_{max} .

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

t = 0 the rover battery starts with 18,000*C* of charge and with $v = 0, \dot{v} = 0$

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

t = 5 during first 5 seconds the rover consumes a lot of energy to increase its speed

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

 $5 < t \le 22$ the rover reduces its speed to avoid an "engine blown" failure

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

 $22 < t \leq 25$ the rover increases its speed again

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

 $25 < t \le 29$ the rover brakes and stops to perform a cooling task

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

 $29 < t \le 35$ the rover performs a cooling task

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study	Experimental Results	Conclusions
			00	

 $35 < t \le 43$ the rover covers the remaining distance to the goal.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit N	Nodel Checking	Case Study 0000	Experimental Results	Conclusions
Outline					

Introduction

2 Planning through Explicit Model Checking

3 Case Study

4 Experimental Results

5 Conclusions

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction	Planning through Explicit Model Checking	Case Study 0000	Experimental Results	Conclusions
Conclus	sions			

We showed how an explicit model checking based planner, namely UPMurphi, can be used to

- create a quite realistic model of a planetary rover (preserving its complex, nonlinear dynamics);
- generate time and resource-optimal plans to control rover engine;

Thus, UPMurphi could be an useful tool to plan activities for autonomous vehicles.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking 000	Case Study 0000	Experimental Results	Conclusions
Conclus	ions			

We showed how an explicit model checking based planner, namely UPMurphi, can be used to

- create a quite realistic model of a planetary rover (preserving its complex, nonlinear dynamics);
- generate time and resource-optimal plans to control rover engine;

Thus, UPMurphi could be an useful tool to plan activities for autonomous vehicles.

Della Penna, Intrigila, Magazzeni, Mercorio

Planning for Autonomous Planetary Vehicles

Introduction 000	Planning through Explicit Model Checking 000	Case Study 0000	Experimental Results	Conclusions
Conclus	ions			

We showed how an explicit model checking based planner, namely UPMurphi, can be used to

- create a quite realistic model of a planetary rover (preserving its complex, nonlinear dynamics);
- generate time and resource-optimal plans to control rover engine;

Thus, UPMurphi could be an useful tool to plan activities for autonomous vehicles.