Long Term Management of Private Digital Assets

Prof. Dr. Heinrich Jasper Technische Universität Bergakademie Freiberg Artificial Intelligence and Databases 09596 Freiberg, Germany

Observations

- Growing amount of individual digital assets:
 - Personal digital photos: these should be accessible to great-grandchildren
 - Contract documents that hold claims against third parties for decades
 - Personal communication like e.g. love-letters (e-mail, SMS)
 - Certificates, degrees etc. from professional organisations or universities
- Individual assets are or will be used via networks:
 - On-line admission to universities and other organizations
 - On-line / off-line digital documents like driving licence, passport etc.
 - Internet based personal services like banking, shopping etc.
- Result: Digital artefacts of individuals are of growing importance

Example: paperless student administration

Requirements / Goals

- Requirements for Private Digital Asset Management:
 - Provide long term **preservation** of digital assets (LPDA: long living private digital asset)
 - Digital assets must be accessible to humans today and in the future (accessible via eyes, ears, ...)
 - Digital assets are used (on-line) in transactions controlled by owner
- Resulting efforts
 - Digital assets should not depend on hardware/software/networking technologies
 - Digital assets must autonomously migrate into future environments
 - Secure interaction / exchange of assets assured in the long run
- Individual needn't (shouldn't!) care!

Known solutions / approaches

- Long term management of digital information:
 - Archaeological approach (secure old systems completely)
 - Emulation of old in existing (new) infrastructure (HW / SW)
 - Manual migration on a regular basis (e.g. every 2nd decade)
 - Special architectures for migration (e.g. UVC)
 - Technical support for migration (e.g. PLM)
 - HD-Rosetta (microscopic text on hardened nickel surfaces)
 - ...
- Secure on-line asset exchange:
 - Public key infrastructure for trustful interactions
 - Re-signature of assets necessary in the long run

Our approach

Provide Private Digital Asset Management in Time via:

- Virtual machine for
 - Persistent and secure storage (extension of the J2EE DAO pattern)
 - Information exchange (extension of J2EE TO pattern)
 - Metadata explicitly provided for each LPDA
 - Ontology for mapping each LPDA into private context

Proactive Agents

- Monitoring changes in the virtual machine instance: activating migration process if necessary
- Monitoring the environment of the virtual machine: activating resignature of assets if necessary

Digital Asset Management in Time

Supporting Technology: Metadata and Ontology

• Meta data

- Self-contained data (and meta data)
- Extends standard RDF-types by
 - Formatting information (in abstract syntax)
 - Presentation algorithm (in abstract syntax)
- Ontology
 - Self-aware data and it-infrastructure
 - "Knows" IT infrastructure
 - Old and new,
 - Abstractions of storage principles, database formats, communication channels, security features, ...
 - Hints for migration process

Architecture of Prototype

Re-Signature of a digital asset

The Migration / Preservation Process

- As much automated as possible
- Set-up for process (by IT-System supplier)
 - Define meta data for long term preservation
 - Define data conversion frames where necessary
 - Define migration ontology for migration of existing IT
- Process: each time a new IT-infrastructure is to be installed
 - Get Migration Ontology of new IT
 - Generate or construct migration routines (fill out frames)
 - Migrate data onto new platform
 - Migrate meta data onto new platform
 - Update archiving ontology of new IT
 - Get rid of old infrastructure

Status / Open Issues

- Feasibility study ongoing
 - PDAM based on virtual machine approach
 - Content of ASCII / UNICODE documents well suited
 - Open document infrastructures dito (e.g. TeX)
 - Standard Ontology technology incorporated
- Open Issues
 - Layout information critical
 - Graphics and pictures even more critical
 - Concentrate on well defined open formats for non-characterinformation (which one?)
 - Ontology must evolve over a very long time period (centuries)
 - Private Ontology not well understood
- Other topics
 - Ontology: "intelligent manual", if necessary for future users
 - Proactive objects with own volition to survive migration of infrastructure might be the future

Thank you!