
Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 1

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 117117 --

ContentsContents

The problem of requirements modelling

Limits of the use cases

Problem frames
Problem frames with UML

Dealing with time: extending OCL

Possible evolutions of the proposed method

Conclusions

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 118118 --

Problem frames with UMLProblem frames with UML

How to apply UML to model the Environment, problem domain, and
shared phenomena.

Requirements (i.e., the desirable properties of the whole system) are
expressed by means of state diagrams and OCL.

Correctness arguments are also addressed.
In order to illustrate the technique, a few problems frames are
presented and modelled by means of UML.

Integration of PFs and scenario-based modelling is also illustrated

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 2

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 119119 --

MotivationsMotivations

Problem frames (PFs) drive developers to understand and describe the
problem to be solved, which is crucial for a successful development
process.

PFs can dramatically improve the early lifecycle phases in software
projects.

PFs are far less popular than other less rigorous approaches.
The notation has some limitations that make it not very appealing

“Impedance mismatch” with design languages, namely UML

UML is popular, but not very good for requirements modeling

low precision and formality

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 120120 --

The basic ideaThe basic idea

�
Combine the problem frames approach and UML

How: make the PF approach seamlessly applicable in the context of
the familiar UML language.

PFs get a popular, easy to use, expressive notation
UML gets a sound, effective, precise method for requirements
specification

Using UML as the notation underlying PFs and as a design language
smoothes the transition from the requirement elicitation and modeling
phase to the design phase.

Moreover, it makes easier to represent traceability relations, since
requirements and elements of the solution are represented in a
homogeneous way.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 3

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 121121 --

A Problem FrameA Problem Frame

A commanded behaviour framecommanded behaviour frame
for he sluice gate control
problem

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}

c: SO!{Raise, Lower, Stop}

Sluice
controller

No specific notation
for expressing
requirements

Readability could be better

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 122122 --

A development process using problem framesA development process using problem frames

Impedance mismatch
problem

Analyst

Modeler

Programmer

(Problem frames)

Reqs

Specs

(UML)

If the programmer does not understand a piece
of the specifications, it may found difficult to
read the requirements, since he does not
understand problem frames (they are not very
popular among programmers…)

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 4

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 123123 --

A development process using problem framesA development process using problem frames

Traceability problem

Developer

(Problem frames)

(UML)

� � � � �� � � � � 	 �
 � � �� �
 � � � � � ��� � � �
 � �� � � � � � � � ��� � � � � � � � � � �
 � � � �
 � � � � � � � �� � � � � � � ! � � � � � � � � � � � � � � � � � � " � � � 	
 �
 � � � # � � �
 � � �� � � � � � 	 �
 � � � $ �
 � � � � � � � �
� � �
 � �� � � � � � � � � �

Controlled

domain

Required

behaviourc

a, b

a: CM!{C1}

Control

machine

b: CD!{C2}
c: CD!{C3}

<<component::CausalDomain>>

Gate&Motor

<<component::machine>>

SluiceController

<<component::BiddableDomain>>

Operator<<interface>>

Command

Raise()

Lower()

Stop()

<<interface>>

Command

Raise()

Lower()

Stop()

<<use>>

<<interface>>

StateNotification

Top()

Bottom()

<<interface>>

StateNotification

Top()

Bottom()

<<interface>>

SluiceOperations

Clock()

Anti()

On()

Off()

<<interface>>

SluiceOperations

Clock()

Anti()

On()

Off()

<<use>>

<<use>>

What UML elements
correspond to a given

PF domain or
phenomenon?

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 124124 --

Problem Frames with UMLProblem Frames with UML

Controlled
domain

Required
behaviour

ca, b

a: CM!{C1}

Control
machine

b: CD!{C2} c: CD!{C3}

<<component>>
ControlledDomain<<component::machine>>

ControlMachine

C2

C1
C3

A logical component
represents the

machine

A logical component
represents the
environment

Phenomena
controlled by the

machine

Phenomena controlled
by the environment and
visible by the machine

Phenomena of the
environment that appear
in the user requirements

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 5

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 125125 --

The sluice gate control frameThe sluice gate control frame

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}

c: SO!{Raise, Lower, Stop}

Sluice
controller

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 126126 --

The sluice gate control frame with UML (1)The sluice gate control frame with UML (1)

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
SluiceController

<<component::BiddableDomain>>
Operator

StateNotification

SluiceOperations

Command

Domains are
represented as

components

The nature of
domains is

specified via
stereotypes

Shared
phenomena are
represented by

interfaces

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 6

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 127127 --

The sluice gate control frame with UML (2)The sluice gate control frame with UML (2)

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
SluiceController

<<component::BiddableDomain>>
Operator

<<interface>>
Command

Raise()
Lower()
Stop()

<<use>>

<<interface>>
StateNotification

Top()
Bottom()

<<interface>>
SluiceOperations

Clock()
Anti()
On()
Off() <<use>><<use>>

Shared phenomena
are represented as
interface operations

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 128128 --

The sluice gate control: specifying detailsThe sluice gate control: specifying details

<<component::CausalDomain>>
:Gate

<<component::CausalDomain>>
:Motor

SluiceMotor

ClockW: boolean
IsOn: boolean

SwitchOn()
SwitchOff()
SetClkWise()
SetAntiClkWise()

SluiceGate

Position: double
IsOpening: boolean
IsClosing: boolean
/IsStill: boolean

<<interface>>
GateMotor

GoUp()
GoDown()
StayStill()

State
Notification

Sluice
Operations

<<component>>

Gate&Motor

<<delegate>><<delegate>>

<<use>>

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 7

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 129129 --

The sluice gate control: specifying The sluice gate control: specifying
behaviourbehaviour

The behaviour of the domain can be specified in several ways.

In English: the gate is lowering (i.e., closing) iff the motor is on and
working anticlockwise and the position of the gate is <1

By means of a statechart (as seen before)
By means of some logic language. For this purpose, UML provides
the OCL (Object Constraint Language)

context Gate&Motor inv:

SluiceGate.IsClosing = (SluiceMotor.IsOn and
not SluiceMotor.ClockW and SluiceGate.position<1)

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 130130 --

The sluice gate control: specifying The sluice gate control: specifying
behaviourbehaviour

Unfortunately, OCL is suitable for every property we may wish to express.

Example:

the motor is on iff an On command arrived, and since then no Off
command arrived

This example requires that we can refer to

the current time,

the time the On command was issued,

The interval between these two times.

OCL simply cannot deal with all these times.
We shall see how to overcome this problem.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 8

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 131131 --

The reliability concernThe reliability concern

We specified that the motor is on iff an On command arrived, and since
then no Off command arrived: this is true only if we do not consider
failures.%
Reliability concern

It is a subproblem
Subproblems are best identified as projectionsprojections of the original problems

subsets of elements and phenomena are relevant to the
subproblem.

Reliability is one of the most common subproblems, since often it is
necessary to describe the main problem, and then to take into account
reliability issues.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 132132 --

Sluice gate controller: auditing reliabilitySluice gate controller: auditing reliability

An information display frame

Gate&Contr
auditing

dd
Safety

operator

ee

e: GC!{Clockw, Anti, On, Off, Top, Bottom}

d: AM!{Stop}

Audit
machine

Gate&motor+
Controller

Warning issued
when abnormal
conditions are

detected

Definition of
abnormal conditions

The whole sluice
control problem

domain

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 9

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 133133 --

<<component::CausalDomain>>
Gate&Motor&Controller

<<component::machine>>
AuditMachine

<<component::BiddableDomain>>
SafetyOperator

Alarm

Operation&State

Sluice gate auditingSluice gate auditing with UMLwith UML

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 134134 --

Specifying abnormal conditionsSpecifying abnormal conditions

The abnormal condition corresponding to the failure to complete an operation
within the expected time can be specified as follows:

If the condition for starting lowering the gate (i.e., the motor received the
AnticlockWise and On commands) was verified D time unites ago, and D is
big enough to allow the completion of the operation

and no counter-order was received

and the gate sensor did non notify the completion of the operation (Bottom
signal)

then a StopWarning will be issued within one time unit.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 10

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 135135 --

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
AuditMachine

<<component::BiddableDomain>>
Sluice&SafetyOperator

Alarm

Operation

Command

State

<<component::machine>>
SluiceController

Merging the Merging the subproblemsubproblem diagrams diagrams

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 136136 --

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
SluiceController&Monitor

<<component::BiddableDomain>>
Sluice&SafetyOperator

Alarm

Operation

Command

State

Final diagramFinal diagram

After merging the two machines:

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 11

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 137137 --

Monitor
patients

b

a

e

c

c: Notify
d: RegisterValue

a: Period, Range, PatientName
b: EnterPeriod, EnterRange, EnterPatientName

Monitor
machine

Nurses’
station

Periods &
ranges

Medical
staff

Analog
devices

ICU
patients

a

c

d

f

e: FactorEvidence
f: VitalFactor, Patient

Patient monitoring: partial problem diagramPatient monitoring: partial problem diagram

A multiplex domain

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 138138 --

The identity concernThe identity concern

The machine must monitor every patient according to the periods and
ranges specified for him/her by the medical staff

The medical staff identify the patient by name when they enter the
period and ranges (b)

The machine has access to periods and ranges associated with
patients’ names (a)
Each patient is connected to a set of analog devices (e)

The machine gets values that are referred to the devices (d)

more precisely, the device and the machine share the value of a
register, accessed at a machine port or storage address.

Somehow, each patient must be associated with the right set of
devices and with the right name

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 12

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 139139 --

The solution of the ID concernThe solution of the ID concern

We can provide an Identities model to be used by the machine.

The Identities model contains triples <Patient, Device, Register

Monitor
patients

b

a

e

c
Monitor
machine

Nurses’
station

Periods &
ranges

Medical
staff

Analog
devices

ICU
patients

a

c

d

f

ID model

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 140140 --

Identities modelIdentities model class diagram class diagram

Mapping

1 1
1

Patient
<< Component >>

Name

<< Component >>

DeviceID
Type

Device

0..*

Register
<< Component >>

PortID

IDmodel
<< Component>>

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 13

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 141141 --

ID model
ICU etc.

ID model
builder

ID model

Paramedic ICU patients,
devices, etc.

Identities model creation Identities model creation workpiecesworkpieces PF PF

The creation and maintenance of the identities model domain has to be
performed by someone who knows the identity of patients and how
they are connected to the system, usually, a paramedic

The creation and maintenance of the identities model is another a
subproblem

A workpieces PF

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 142142 --

<<component::machine>>
ModelBuilderMachine

<<component::DesignedDomain>>
IDmodel

<<component::BiddableDomain>>
Paramedic

<<component::Domain>>
Patient

<<component::CausalDomain>>
Device

<<component::CausalDomain>>
Register

<<component::machine>>
MonitoringMachine

Identities modelIdentities model: integrated view: integrated view

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 14

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 143143 --

<<component::machine>>
ModelBuilderMachine

<<component::DesignedDomain>>
IDmodel

<<component::BiddableDomain>>
Paramedic

<<component::Domain>>
Patient

<<component::CausalDomain>>
Device

<<component::CausalDomain>>
Register

<<component::machine>>
MonitoringMachine

Identities modelIdentities model: integrated view: integrated view

<<observes>>

Editing interface

Reading interface

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 144144 --

ContentsContents

The problem of requirements modelling

Limits of the use cases

Problem frames
Problem frames with UML

Dealing with time: extending OCL

Possible evolutions of the proposed method

Conclusions

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 15

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 145145 --

Dealing with time: extending OCLDealing with time: extending OCL

UML is limited with respect to the possibility of specifying temporal
aspects. By means of OCL it is not possible to reference different time
instants in a single OCL formula. Only invariant properties can be
formalized, which at most include references to attribute values before
or after method execution.

An extension of OCL is presented to overcome these limitations.
Examples are given.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 146146 --

OCL: limitationsOCL: limitations

OCL can be used to state behavioral properties of a system and its parts.

OCL cannotcannot explicitly predicate about the temporal properties of a
system

Neither in its current form nor in OCL 2.0

Only inv (the Always construct of temporal logic) is available

When dealing with time-dependent systems, OCL needs to be extended
to fully specify temporal aspects.

For instance, we need to specify the time distance between events

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 16

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 147147 --

The OTL languageThe OTL language

OTL is a temporal logic extension to OCL.

Based on one fundamental temporal operator

It provides the typical basic temporal operators of temporal logics, i.e.,
Always, Sometimes, Until, etc.

It allows to reason about time in a quantitative fashion.

Totally integrated with the other UML notations.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 148148 --

OTL extends OCL 2.0OTL extends OCL 2.0

OTL extends the OCL 2.0 standard library by adding two new classes,
Time and Offset.

Our extensions do not
require any change in
the metamodel of OCL
2.0.
Types Time and Offset
are simply new types
that are added to the
OCL standard library as
specializations of
OclAny.

OclAny

String

OclType RealOclModelElement

Boolean

Integer

Time Offset

OclState

OclVoid

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 17

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 149149 --

New operatorsNew operators

Methods of class Time
Boolean eval(OclExpression p)

The meaning of t.eval(p) is that p is evaluated at time t.

Consistently with the OCL notation we can write p@t instead of
t.eval(p)

Time operator +(Offset d)

Boolean operator ≤(Time t)
Offset dist(Time t)

Set(Time) futrInterval(Offset d)

Set(Time) pastInterval (Offset d)

Methods of class Offset
Offset operator +(Offset d)

Offset operator -(Offset d)

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 150150 --

Which time?Which time?

Time and Offset may be discrete or dense, depending on the
application at hand.

The adoption of a possibly dense time has implications on the
semantics of the OTL language

OCL assumes that quantified variables range only over finite sets
and defines the meaning of quantification in terms of finite
iterations.
In the OTL language the semantics of quantification over time is
defined in the same way as in more conventional mathematical
logics that include arithmetic.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 18

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 151151 --

Defining temporal operatorsDefining temporal operators

Based on method eval, all other temporal operators can be defined.
E.g.,

context C
inv: Lasts(p, d)

specifies that p holds at all times between now and now+d. It is a
shorthand for

context C
inv: let I:Set(Time)=now.futrInterval(d) in

I->forall(t: Time| t.eval(p))

now denotes the time with reference to which the (sub)formula is
interpreted.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 152152 --

More temporal operatorsMore temporal operators

p holds until q occursUntil(p,q)

p is true within d time units in the futureWithinF(p,d)

p is always true in the futureAlwF(p)

p is true sometimes in the futureSomF(p)

p is true d time units in the futureFutr(p,d)

MeaningOperator

Operators referring to the past (Past(p,d), SomP(p), AlwP(p),
WithinP(p,d), and Since(p,q)) are similarly defined.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 19

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 153153 --

Formal definition of temporal operatorsFormal definition of temporal operators

let I: Set(Time) = now.futrInterval(inf) in

I- >exists(t:Time| q@t and Lasts(p,t-now))

Until(p,q)

let I: Set(Time) = now.futrInterval(d) in

I->exists(t: Time| p@t)

WithinF(p,d)

let I: Set(Time) = now.futrInterval(inf) in

I->forall(t: Time| p@t)

AlwF(p)

let I: Set(Time) = now.futrInterval(inf) in

I->exists(t: Time| p@t)

SomF(p)

p@(now + d)Futr(p,d)

formal definitionoperator

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 154154 --

Sluice gate controller: Sluice gate controller: properiesproperies

Here we show how the properties of the sluice gate controller can be
expressed by means of OTL

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 20

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 155155 --

The sluice gate control: specifying The sluice gate control: specifying
behaviourbehaviour

The behaviour of the domain can now be specified by means of OTL
statements like the following.
Rule: the motor is on iff an On command arrived, and since then no Off
command arrived

context Gate&Motor inv:

SluiceMotor.IsOn = Since(not SluiceOperations^Off,
SluiceOperations^On)

where Since(p,q) states that q occurred in the past, and since then p
is true.

Note: this is the specification of the behaviour of the domain. According to
the requirements, the motor will be on only when

The direction is clockwise and the position is not fully open, or
The direction is anticlockwise and the position is not fully closed

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 156156 --

The sluice gate control: specifying The sluice gate control: specifying
requirementsrequirements

The Raise command from the operator is simply transformed by the
machine in the pair of commands <ClockWise, On> which are sent to
the Motor, unless the Gate is already Open.

context Operator inv:
(Command^Raise and not SluiceGate.position<0.05) =
(SluiceOperations^Clock and SluiceOperations^On)

This applies only if
the gate is still.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 21

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 157157 --

The sluice gate control: specifying The sluice gate control: specifying
requirementsrequirements

The Raise command from the operator is simply transformed by the
machine in the pair of commands <ClockWise, On>, when the command
is viable and sensible.

context Operator inv:
((Command^Raise and SluiceGate.IsStill and

not SluiceGate.position<0.05) implies
(SluiceOperations^Clock and SluiceOperations^On)) and

((Command^Raise and SluiceGate.IsClosing and
not SluiceGate.position<0.05) implies
(SluiceOperations^Off and
Futr(SluiceOperations^Clock and SluiceOperations^On, D))

context Operator inv:
SluiceOperations^On = (Command^Raise or Command^Lower)

context Operator inv:
(Command^Raise and SluiceGate.IsOpening) implies Nop

D is the time taken by the motor and gate to stop

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 158158 --

Realistic specificationsRealistic specifications

The specifications we saw are sort of “idealized” one: for istance they
assume that commands can be issued simultaneously.

When this is not the case, we must be able to specify that events
occurring “close enough” can be considered practically simultaneous.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 22

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 159159 --

The sluice gate control: specifying The sluice gate control: specifying
behaviourbehaviour

The motor starts in the clockwise direction if...
SwithOn and SetClkWise arrived (in any order!) in a small ST time
interval.
No SwithOff or SetAntiClkWise arrived in the same interval

context Gate&Motor inv:
(SluiceMotor^SwitchOn and
WithinP(SluiceMotor^SetClkWise, ST) or
SluiceMotor^SetClkWise and
WithinP(SluiceMotor^SwitchOn, ST))
and not WithinP(SluiceMotor^SetAntiClkWise, ST)
and not WithinP(SluiceMotor^SwitchOff, ST))
implies WithinF(SluiceMotor.IsOn and SluiceMotor.ClockW,MD)

where MD is the time taken by the motor to react to commands

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 160160 --

The sluice gate control: specifying abnormal The sluice gate control: specifying abnormal
conditionsconditions

If the condition for starting lowering the gate (i.e., the motor received the
<AnticlockWise,On> commands) was verified D time unites ago, and D is
big enough to allow the completion of the operation (CT being the expected
completion time and MD the motor reaction time), and no counter-order was
received, and the gate sensor did non notify the completion of the operation
(Bottom signal) then a StopWarning will be issued within one time unit.

context AuditMachine inv:

(Operation^On and Operation^Anticlockwise)@now-D

and not WithinP((Operation^Clockwise or Operation^Off),D)

and D >= CT+MD and not WithinP(State^Bottom, D)

implies WithinF(Alarm^StopWarning, 1)

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 23

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 161161 --

ContentsContents

The problem of requirements modelling

Limits of the use cases

Problem frames
Problem frames with UML

Dealing with time: extending OCL

Problem frames with UML

Enhancing Problem Frames with Scenarios and Histories

Possible evolutions of the proposed method
Conclusions

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 162162 --

The sluice gateThe sluice gate

Position=0
Position=0.25

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 24

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 163163 --

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}
c: SO!{Raise, Lower, Stop}

The sluice gate commanded behaviour frameThe sluice gate commanded behaviour frame

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 164164 --

The sluice gate commanded behaviour frame in UMLThe sluice gate commanded behaviour frame in UML

<<use>>

<<use>>

SluiceController
<<component::machine>>

Gate&Motor
<<component::causal_domain>>

Operator
<<component::biddable_domain>>

SluiceOperations
<<interface>>

+Clock()
+Anti()
+On()
+Off()

Command
<<interface>>

+Raise()
+Lower()
+Stop()

Requirements include that the
machine provides the user interface.
(In principle these could be states of

the operator’s commands!)

StateNotifications
<<interface>>

+Top()
+Bottom()

<<use>>

Raise & lower gate

The internals of the
Gate&Motor domain
(including the state)

are not shown

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 25

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 165165 --

The sluice gate commanded behaviour frame in UMLThe sluice gate commanded behaviour frame in UML

SluiceController
<<component::machine>>

Gate&Motor
<<component::causal_domain>>

Operator
<<component::biddable_domain>>

SluiceOperations
<<interface>>

+Clock()
+Anti()
+On()
+Off()

Command
<<interface>>

+Raise()
+Lower()
+Stop()

:Gate
<<component::causal_domain>>

:Motor
<<component::causal_domain>>

<<use>>

<<use>>

TopS:Sensor
<<component::causal_domain>>

BottomS:Sensor
<<component::causal_domain>>

Transmission

<<delegate>>

SetResetSetReset

<<use>>

<<delegate>>

StateNotifications
<<interface>>

+Top()
+Bottom()

<<delegate>>

Raise & lower gate

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 166166 --

Internal organization of the Motor and GateInternal organization of the Motor and Gate

Gate
<<component::causal_domain>>

Transmission
<<interface>>

+ StepUp()
+ StepDown()

Motor
<<component::causal_domain>>

SluiceMotor

- ClockW: boolean
- IsOn: boolean
+ SwitchOn()
+ SwitchOff()
+ SetClkWise()
+ SetAntiClkWise()

SluiceGate

- Position: double
- /State: GateState

<<use>>

GateState
<<enumeration>>

+ IsOpening
+ IsClosing
+ IsStillSluiceOperations

Gate State is defined on the
basis of the motor observable

states (i.e., attributes).

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 26

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 167167 --

Details of the sensor componentDetails of the sensor component

Sensor
<<component::causal_domain>>

SetReset
<<interface>>

+Set()
+Clear()

SluiceSensor

-value: Boolean

+Set()
+Clear()

StateNotifications

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 168168 --

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}

c: SO!{Raise, Lower, Stop}

GM!Shut(t0)
SO!Raise(t1)
SC!Clockw(t2)
SC!On(t3)
GM!Rising(t4)
GM!Top(t5)
SC!Off(t6)
GM!Open(t7)

t2-t1 = SC_reaction_time
0< t3-t2 < d
t4-t3 = GM_reaction_time
t5-t4 = Sluice_height/Speed+

GateSensor_reaction_time
t6-t5 = SC_reaction_time
t7-t6= GM_reaction_time

1. Gate is shut.
2. The operator issues the

command to raise
(open) the gate.

3. The control machine
activates the motor.

4. After a while the gate is
open.

5. The control machine
stops the motor.

6. The gate is still in the
open position.

Scenario 1Scenario 1

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 27

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 169169 --

The UML sequence diagram representing scenario 1The UML sequence diagram representing scenario 1

SC : SluiceControllerGM : Gate&Motor Op : OperatorG : Gate M : Motor

1 : Raise()
2 : Clock()

4 : On()
6 : StepUp()

9 : Top()

10 : Off()

{State==IsStill
and Position==1} {IsOn==False}

{State==IsOpening}

11: SwitchOff()

{State==IsStill
and Position & 0.05}

{IsOn==True}

{IsOn==False}

i: StepUp()

{State==IsOpening}

7: StepUp()

{State==IsOpening
and Position & 0.05}

loop [(93)]

TopS: Sensor

3 : SetClkWise()

5 : SwitchOn()

8 : Set()

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 170170 --

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}

c: SO!{Raise, Lower, Stop}

1. Gate is shut.
2. The operator issues the

command to raise (open)
the gate.

3. The control machine
activates the motor.

4. After a while –before the
gate is completely open–
the operator issues a stop
command.

5. The control machine stops
the motor.

6. The gate is still in an
intermediate position.

GM!Shut(t0)
SO!Raise(t1)
SC!Clockw(t2)
SC!On(t3)
GM!Rising(t4)
SO!Stop(t5)
SC!Off(t6)
GM!Still(t7)

t2-t1 = SC_reaction_time
0< t3-t2 < d
t4-t3 = GM_reaction_time
t5-t4 < Sluice_height/Speed
t6-t5 = SC_reaction_time
t7-t6= GM_reaction_time

Needed to specify the effect
of the Off command

Scenario2 requires the introduction of a new stateScenario2 requires the introduction of a new state

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 28

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 171171 --

The UML sequence diagram representing scenario 2The UML sequence diagram representing scenario 2

SC : SluiceControllerGM : Gate&Motor Op : OperatorG : Gate M : Motor

1 : Raise()
2 : Clock()

3 : SetClkWise()

4 : On()5 : SwitchOn()6 : StepUp()

{State==IsStill
and Position==1} {IsOn==False}

{State==IsOpening} {IsOn==True}

i: StepUp()

{State==IsOpening}

loop [(1,93)]

{State==IsStill and
Position>0.05 and
Position<0.95}

7 : Stop()
8 : Off()9 : SwitchOff()

{IsOn==False}

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 172172 --

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling, Still}
c: SO!{Raise, Lower, Stop}

The sluice gate PF The sluice gate PF updated with Still stateupdated with Still state

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 29

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 173173 --

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling, Still}

c: SO!{Raise, Lower, Stop}

1. Gate is shut.
2. The operator issues the command

to lower (shut) the gate.
3. The control machine –which

“knows” the state of the gate– does
nothing.

4. The gate is still in the shut position.

GM!Shut(t0)
SO!Lower(t1)
SC!Clockw(t2) or SC!Anti(t2) or nothing
SC!On(t3)

Prohibited scenario

Scenario 3 (Scenario 3 (Prohibited scenarioProhibited scenario))

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 174174 --

The UML sequence diagram representing scenario 3The UML sequence diagram representing scenario 3

SC : SluiceControllerGM : Gate&Motor Op : OperatorG : Gate

1 : Lower()

2 : On()

{State==IsStill
and Position ' 0.95}

ignore {Clock, Anti, SetClkWise, SetClkWise}

assert neg

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 30

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 175175 --

1. Gate is shut.
2. The operator issues the

command to raise (open)
the gate.

3. The control machine
activates the motor.

4. After a while –before the
gate is open– the operator
issues a lower (close)
command.

5. The control machine first
stops the motor, then
inverts the movement, and
finally restarts the motor.

GM!Shut(t0)
SO!Raise(t1)
SC!Clockw(t2)
SC!On(t3)
GM!Rising(t4)
SO!Lower(t5)
SC!Off(t6)
GM!Still(t7)
SC!Anti(t8)
SC!On(t9)
GM!Falling(t10)

t5-t4 < Sluice_height/Speed
t6-t5 = SC_reaction_time
t7-t6=t10-t9= GM_reaction_time
0< t8-t6 < d
0< t9-t8 < d

It could be t7>t8!

Scenario 4Scenario 4

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising,
Falling, Still}

c: SO!{Raise, Lower, Stop}

Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 176176 --

The UML sequence diagram representing scenario 4The UML sequence diagram representing scenario 4

SC : SluiceControllerGM : Gate&Motor Op : OperatorG : Gate M : Motor

1 : Raise()
2 : Clock()

3 : SetClkWise()

4 : On()5 : SwitchOn()6 : StepUp()

{State==IsStill
and Position==1} {IsOn==False}

{State==IsOpening} {IsOn==True}

i: StepUp()

{State==IsOpening}

loop [(1,93)]

{State==IsStill and
Position>0.05 and
Position<0.95}

7 : Lower()
8 : Off()9 : SwitchOff()

{IsOn==False}

14: StepDown()

{State==IsClosing}

11: SetAntiClkWise()

13: SwitchOn()
12 : On()

{ClockW==False}

{IsOn==True and
ClockW==False}

{ClockW==True}

10 : Anti()

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 31

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 177177 --

A SD asserting a behavioural ruleA SD asserting a behavioural rule

Scenario fragments can be used to state general behavioural rules that
the system has to obey in all cases.

For instance, this sequence diagram states that whenever the
Gate&Motor receives an On command, it issues a SwitchOn
command to the motor.

SC : SluiceControllerGM : Gate&MotorM: Motor

1 : On()

2 : SwitchOn()assert

{IsOn==True}

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 178178 --

Requirements: reaction to commands and eventsRequirements: reaction to commands and events

Requirements are expressed as effects on the problem domain caused
directly by the user’s commands.

More straightforward than in MJ’s book
Note: condition on Position rather than on the sensor state!

State=IsStill ∧
Position (0.95

State=IsStill ∧
Position>0.05 ∧
Position<0.95

State=IsStill ∧
Position) 0.05

Stop, Lower

Stop

Stop, Raise

State=IsOpening ∧
Position>0.05 ∧
Position<0.95

Stop

Lower

Closed

Raise

Stop

Raise
Raise

Lower

State=IsClosing ∧
Position>0.05 ∧
Position<0.95

Lower

Open

when(Position (0.95)

when(Position) 0.05)

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 32

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 179179 --

Problem domain behaviourProblem domain behaviour

1: ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOff, SetClkWise

2: ¬ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOn, SetAntiClkWise

SetClkWise SetAntiClkWise

3: ClocW ∧ IsOn
(State==IsOpening)

SwitchOn, SetClkWise

SwitchOn

SwitchOff

4: ¬ ClocW ∧ IsOn
(State==IsClosing)

SwitchOn, SetAntiClkWise
SwitchOff

SwitchOn

5: ?

SetAntiClkWise

SetClkWise

after(1s)/Position -= 0.01

after(1s)/Position += 0.01

Position>1

Position<0

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 180180 --

Scenarios for user requirements modellingScenarios for user requirements modelling

These scenarios involve only elements from the problem domain
(including the operator). In our case, every scenario specifies the
desired effects of a user’s command (or sequence of commands, or
change events, such as reaching the completely open of closed
positions) on the problem domain. These scenarios should start with
an Operator’s command and end with an effect on the controlled
domain.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 33

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 181181 --

Scenario describing user requirementsScenario describing user requirements

SC : SluiceControllerGM : Gate&Motor Op : OperatorG : Gate M : Motor

1 : Raise()
{State==IsStill
and Position==1} {IsOn==False}

{State==IsStill
and Position * 0.05}

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 182182 --

Scenarios for problem domain modellingScenarios for problem domain modelling

These scenarios involve only elements from the problem domain. In
our case, the effects of signals and commands applied directly at the
motor are described. These scenarios should start with an Operator’s
command and end with an effect on the controlled domain.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 34

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 183183 --

Scenario describing the problem domainScenario describing the problem domain
(gate rising)(gate rising)

SC : SluiceControllerGM : Gate&MotorG : Gate M : Motor

2 : Clock()
3 : SetClkWise()

4 : On()5 : SwitchOn()6 : StepUp()

{State==IsStill
and Position==0.33} {IsOn==False}

{State==IsOpening and
Position==0.32}

{IsOn==True}

{State==IsStill and
Position==0.31}

8 : Off()9 : SwitchOff()

{IsOn==False}

{ClockW==True}

6 : StepUp()

{State==IsOpening and
Position==0.31}

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 184184 --

Scenario describing the problem domainScenario describing the problem domain
(gate rising and sensor reaction)(gate rising and sensor reaction)

SC : SluiceControllerGM : Gate&MotorG : Gate M : Motor

2 : Clock()
3 : SetClkWise()

4 : On()
5 : SwitchOn()

6 : StepUp()

{State==IsStill
and Position==0.07} {IsOn==False}

{State==IsOpening and
Position==0.06}

{IsOn==True}

9 : Top()

{ClockW==True}

7 : StepUp()

{State==IsOpening and
Position==0.05}

TopS : Sensor

8 : Set()

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 35

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 185185 --

UML UML statechartstatechart describing the problem domain describing the problem domain
behaviourbehaviour

SetAntiClkWiseSetClkWise

SwitchOn

SwitchOff

SetAntiClkWise

after(1s) / Position-=0.01

when(Position<0.05) /
BottomSensor.Set()

StoppedClockwise

StoppedAntiClockwise WorkingAntiClockwise

Broken

when(Position<0)

SwitchOn

SwitchOff

after(1s) / Position+=0.01

SetClkWise

when(Position>1)

when(Position>0.95) /
TopSensor.Set()

<<invariant>>
Gate&Motor.oclInState(WorkingClockWise) = (Motor.IsOn=True and
Motor.ClockW=True and Gate.State=IsOpening)

when(Position<0.95) / TopSensor.Reset()

<<invariant>>
Gate&Motor.oclInState(WorkingAntiClockWise) = (Motor.IsOn=True and
Motor.ClockW=False and Gate.State=IsOpening)

when(Position>0.05) / BottomSensor.Reset()

<<invariant>>
Gate&Motor.oclInState(StoppedClockWise) =
(Motor.IsOn = False and Motor.ClockW=True and
Gate.State=IsStill)

<<invariant>>
Gate&Motor.oclInState(StoppedAntiClockWise) =
(Motor.IsOn = False and Motor.ClockW=False and
Gate.State=IsStill)

Unknown State. It should
never be entered.

WorkingClockwise

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 186186 --

ContentsContents

The problem of requirements modelling

Limits of the use cases

Problem frames
Problem frames with UML

Dealing with time: extending OCL

Possible evolutions of the proposed method

Conclusions

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 36

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 187187 --

Evolutions of the proposed methodEvolutions of the proposed method

New modelling language have been proposed to overcome UML
weaknesses.

For instance, SysML is intended to provide a bettrer support for system
modelling
[OMG System Modeling Language (OMG SysML) Specification, May
2005. Final Adopted Specification,ptc/06-05-04.]

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 188188 --

SysMLSysML

A general-purpose graphical modeling language
for specifying, analyzing, designing, and verifying complex systems

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 37

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 189189 --

Problem frames and domain Problem frames and domain modellingmodelling with with SysMLSysML

bdd [block] ProblemDefinition

«block»
SluiceGateSystem

«block»
SluiceOperator

«block»
SluiceController

Values
sgState: SluiceGateState

«block»
Gate&Motor

g&m

ctrl

slOp

slCmd:SluiceOperation

slCmd:SluiceOperation

OpId: SluiceOpType

«signal»
SluiceOperation

Clock
Anti
On
Off

«enumeration»
SluiceOpType

cport

Command

cport

Command

+Raise()
+Lower()
+Stop()

«interface»
Command

ibd [block] SluiceGateSystem

STop:Boolean

Top:Boolean

ctrl: SluiceController

g&m: Gate&Motor

slOp: SluiceOperator

cport

Command
cport

Command

STop:Boolean

Top:BooleanslCmd:SluiceOperation

slCmd:SluiceOperation

SBottom:Boolean

Bottom:Boolean

SBottom:Boolean

Bottom:Boolean

HasToSatisfy
«requirement»
UserRequirements

Open
Shut
Raising
Falling
Still

«enumeration»
SluiceGateState

Phenomena

Domain
Shared

phenomena
Requirements
(can be modelled
via requirements

diagram)

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 190190 --

Gate&MotorGate&Motor domains with domains with SysMLSysML

bdd [block] Gate&Motor

«block»
Motor

«block»
Gate

operations
-SwitchOn()
-SwitchOff()
-SetClkWise()
-SetAntiClkWise()

values
-ClockW:Boolean
-IsOn:Boolean

values
-Position:Real
-State:GateState

IsOpening
IsClosing
IsStill

«enumeration»
GateState

«block»
Sensor

Step:StepType

«signal»
Transmission

StepUp
StepDown

«enumeration»
StepTypeTr:Transmission

Tr:Transmission

Value:Real

State:Boolean

Position:Real

Op:SluiceOperations

ibd [block] Gate&Motor

mot: Motor

gate: Gate

topS: Sensor bottomS: Sensor

Position:Real
Value:Real Value:Real

Tr:Transmission

Tr:Transmission

Top:Boolean

State:Boolean
State:BooleanOp:SluiceOperations

slCmd:SluiceOperation Bottom:Boolean

Blocks can be
hierarchically

decomposed in
order to show

details

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 38

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 191191 --

The activities associated with the components of The activities associated with the components of
the problem domainthe problem domain

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 192192 --

The dynamics of the Gate and MotorThe dynamics of the Gate and Motor

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 39

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 193193 --

Formal specification of the Lower Command Formal specification of the Lower Command
requirementrequirement

Formal spec. of the consequence
of a Lower signal when the gate is

open or still

Formal spec. of the consequence
of a Lower signal when the gate is

rising

The definition of the specified
behaviour is connected to the

relevant model elements

TRIO
temporal

logic

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 194194 --

ContentsContents

The problem of requirements modelling

Limits of the use cases

Problem frames
Problem frames with UML

Dealing with time: extending OCL

Possible evolutions of the proposed method

Conclusions

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 40

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 195195 --

Conclusions Conclusions -- summarysummary

The seminar presented UML-oriented ways of representing problems
frames, so that PF-based requirements engineering practices can be
effectively integrated into the UML development process.

We showed that problem frames can be actually described by means
of UML diagrams complemented with declarative specifications
exploiting the OTL language.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 196196 --

Conclusions Conclusions -- summarysummary

The UML-based notation seems to be quite expressive, and to enable
a natural and readable style.

For instance, in the sluice control system it is quite natural to
represent separately the motor and the gate, to describe the motor
in terms of a class with its own properties (attributes and methods),
and to map methods onto interface operations, thus contributing to
explain the structure and behavior of the controlled domain.

The modelling activities carried out with the technique that integrates
scenarios and problem frames concerned domain modelling,
requirements modelling, sub-problem composition, dealing with the
frame concern, and even sketching a simple design schema.

Scenarios were used in all these cases, and they proved
expressive enough and quite readable.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 41

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 197197 --

Conclusions Conclusions –– expected advantagesexpected advantages

Using the problem frames concepts in a UML-based development is
expected to provide two major benefits:

problem frames usage and representation is made more intuitive,
thus making them more appealing to professional software
developers;

UML-based development should greatly benefit from the rigorous
concepts embedded in the problem frames approach.

This applies to the integration of scenario-based representation as
well.

Although problem frames can be used in any development process, in
practice they are not widely used: the popularity of UML is expected to
maximise the target audience for the proposed approach. We expect
that the usage of problem frames could be enhanced via the
integration in a process employing the UML notation.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 198198 --

Conclusions Conclusions –– expected advantagesexpected advantages

The UML-based notation favors traceability.

With our approach the notation used to describe the problem domain
and the requirements is the same used to describe the machine
specifications and the design.

This homogeneity makes it easier to establish/recognize dependency
relations, since most relations link elements of the same nature
(components, classes, attributes, states, etc.) in requirements,
specifications and design.

Several tools for requirements management can import UML models,
thus permitting to establish and maintain traceability relationships.

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 42

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 199199 --

Conclusions Conclusions –– expected advantagesexpected advantages

Describing the requirements with UML makes it possible to define
UML-based techniques that guide the transition from the requirements
modeling phase to the design phase.

Concerning the transition from problem frames to design, see
Choppy, C. and Reggio, G., “A UML-Based Method for the
Commanded Behavior Frame”, 1st International Workshop on
Advances and Applications of Problem Frames, co-located with
26th ICSE, Edinburgh, May 2004

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 200200 --

Conclusions Conclusions -- applicability conditionsapplicability conditions

We found no feature of a problem domain, shared phenomenon,
behavior specification, etc. that could not be expressed in the proposed
UML-based notation.

In principle, the proposed techniques should be applicable in any
context.

When dealing with domains or requirements that have relevant time-
related properties, and it is therefore necessary to specify timing
properties, one can:

Use OLT, which unfortunately is not standard and not supported by
tools.

Use SysML instead of UML, and exploit any suitable notation
embedded in SysML <<constraints>>

Modelling requirements with UML: a rigorous approach L. Lavazza and V. Del Bianco

(c) Università dell'Insubria 2007 43

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 201201 --

Conclusions Conclusions –– tool supporttool support

The UML-based representation of problem frames is effectively
supported by any UML compliant tool.

Unfortunately there is no tool support for OTL

As a research activity, we are developing a tool that allows the user to
create problem frame diagrams and than convert them into the UML-
base representation we saw.

As a next step, we are planning to develop a tool that supports full
integration of UML and problem frame concepts.

Modelling requirements with UML: a rigorous approachModelling requirements with UML: a rigorous approachL. Lavazza and V. Del BiancoL. Lavazza and V. Del Bianco -- 202202 --

ReferencesReferences

C. Gunter, E. Gunter, M. Jackson, P. Zave, A reference model for
requirements and specifications. IEEE Software 3(17), 2000

M. Jackson. Problem Frames - analysing and structuring software
development problems. Addison-Wesley ACM Press, 2001.
L. Lavazza and V. Del Bianco. Combining Problem Frames and UML in the
description of software requirements. In Proc. of Int. Conf. on Fundamental
Approaches to Software Engineering (FASE06), 2006.

V. Del Bianco and L. Lavazza, “Enhancing Problem Frames with Scenarios
and Histories in UML-based software development”, Expert Systems – The
Journal of Knowledge Engineering – Blackwell publishing, IWAAPF06 special
issue, to appear.
L. Lavazza, S. Morasca, A. Morzenti, “A Dual Language Approach to the
Development of Time-Critical Systems with UML” TACoS (International
Workshop on Test and Analysis of Component Based Systems) in conjunction
with ETAPS 2004, Barcelona, March 27 - 28, 2004. Electronic Notes in
Theoretical Computer Science 116 (2005), January 19, pag. 227–239.
Documentation on UML, OCL, and SysML can be found at the OMG site
(www.omg.org)

