
C O M P U T A T I O N W O R L D 2 0 2 4

Toward a Rejuvenation Factory
For Software Landscapes

A P R I L 1 5 , 2 0 2 4

H E R W I G M A N N A E R T ,
T I M V A N W A E S , F R E D E R I C H A N N E S



• Electronics engineer, PhD in computer vision

• Co-created Normalized Systems Theory on engineering and architecture of
evolvable software systems, i.e., enabling systems to cope with change

• Books and papers (140 publications), and YouTube channel
• Human adoption

• Spin off company with 55 software engineers
• > 65 software engineers at customers / partners

• Software production
• Suite of code generators and tools
• Many software projects AND products, e.g.,

• Energy monitoring and management suite
• Command & Control Centre for medical drone transport

• Full professor at University of Antwerp, not an esteemed researcher

Intro on myself & my work



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



• Agile paradigm has become default methodology in software

• There is a widespread belief in various benefits
• E.g. timely delivery

• However, some disadvantages could be argued
• E.g. increase of technical debt

• Normalized Systems Theory aims to improve evolvability through
normative structure of software skeletons

• We investigate the balancing of evolvable architecture and agile design
through the case study of an agile NST software factory
 DSR: Observational case study aiming to contribute to the rigor cycle

Introduction



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



• Software maintenance is intimately related to evolution as a large part is
about non-corrective actions anf functional enhancements

• In depth studies of Manny Lehman lead to:
• Insight that maintenance is evolutionary development

• Formulation of Lehman’s Laws, including Law of Increasing Complexity

• Traditionally not much attention within IS community

• Recent more attention through the introduction of
• Technical debt

• Maintenance debt

Software Maintenance and Evolvability



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



Design Theorems for Stable Software

• In order to avoid dynamic instabilities in the software design cycle, the
rippling of changes needs to be depleted or damped: a = 0

• As these ripples create combinations of multiple changes for every
functional change, we call these instabilities combinatorial effects

• Demanding systems theoretic stability for the software transformation,
leads to the derivation of principles in line with existing heuristics

• Adhering to these principles avoids dynamic instabilities, meaning that
these principles are necessary, not sufficient for systems stability



• Element structures are needed to interconnect with CCC solutions

• NS defines 5 types of elements, aligned with basic software concepts:
• Data elements, to represent data variables and structures

• Task elements, to represent instructions and/or functions

• Flow elements, to handle control flow and orchestrations

• Connector elements, to allow for input/output commands

• Trigger elements, to offer periodic clock-like control

• It seems obvious to use code generation techniques to create instances
of these recurrent element structures

• Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Software Elements for Stable Skeleton Structures



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Separating the Dimensions of Variability
Skeletons

Mirrors

Utilities

Persistency

Codebase

Craftings



• Variability Dimensions

The Premise of Normalized Systems Theory



• We identify four dimensions of variability:
• Models or mirrors, new data attributes/relations, new elements

• Expanders or skeletons, new or improved implementations of concerns

• Infrastructure or utilities, new frameworks to implement various concerns

• Custom code or craftings, new or improved implementations of tasks, screens

• If separated and well encapsulated
• Number of versions to maintain is additive: #V = #M + #E + #I + #C

• Number of versions available is multiplicative: #V = #M x #E x #I x #C

• Where the same holds within any individual dimensions,

e.g., infrastructure dimension: #I = #G x #P x #B x #T

The Essence of Variability Dimensions



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



• More industrial assembly of software has been pursued for decades
• Mass produced software components

• Software product lines

• Software factories

• Systematic reuse of software still faces many issues

• More challenging in a code generation environment
• MDE, MDA

• LCDP, NCDP

• NST software factory needs to support
• Harvesting and Re-injection

Integrating Expansion in a Software Factory



From CI/CD to Continuous Rejuvenation



• Need for an expansion cycle before the build phase

From CI/CD to Continuous Rejuvenation



• Structural rejuvenation along dimensions of variability

• Upgrading external frameworks to new versions
• Standard practice
• NST may facilitate evolution of interface code

• Upgrading expander skeletons to new versions
• From bug fixes to code improvements
• To adding features and functionality

• Upgrading infrastructure to new frameworks
• For existing or new cross-cutting concerns
• For entire application landscapes

Normalized Systems Rejuvenation Modes



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



• Structural rejuvenation

• According to different modes

• For single, significant observation

• Under normal market conditions

The Case of an NST Rejuvenation Factory



• Continuous development
• Applications in full or extended development

• Several applications have dedicated expanders

• Daily build and test, bi-weekly deployments

• Updating dependencies
• Similar to traditional CI/CD, cadence as above

• Rejuvenating skeletons
• Expanders follows same cadence

• Rejuvenated skeletons in production (bi-)monthly

• Structural rejuvenation of skeletons across application landscape, the CI/CD/CR
has only been realized the last 4 to 5 years

The Case of an NST Rejuvenation Factory



• Replacing technologies
• Throughout the years, support has been introduced in logic/data layer for

• Additional databases

• Additional providers for transactions, persistency, access control

• In the early years, systematic migrations have been done in view/control layer
• MVCMVC: Cocoon to Struts2

• MVCMVC-MVVM: Struts2 to Struts2/Knockout

• In recent years, technologies were introduced without systematic migration
• JAX-RS in control layer

• Angular in view layer

• Systematic migration seems to be hampered by discipline creep

The Case of an NST Rejuvenation Factory



Toward a Rejuvenation Factory for Software Landscapes

Overview

• Introduction

• Software Maintenance and Evolvability

• The Premise of Normalized Systems Theory

• A Normalized Systems Software Factory

• The Case of an NST Rejuvenation Factory

• Conclusion and Future Work



• We have presented an observational case study to evaluate the realization
of the envisioned evolvability characteristics in an agile state-of-the-art NST
software factory

• Contributions:
• Described application of NST at scale in agile software factory
• Validated that some levels of evolvability can be operationalized
• Identified a concern that may hamper evolvability in realistic environment

• Limitations:
• Case study factory was set up in the NST spin-off company
• Software factory has only been operating at scale for a few years

• We plan to continue this study
• In an extended time period
• Operating at an increasing scale

Conclusion and Future Work



QUESTIONS ?

herwig.mannaert@uantwerp.be


