IARIA

COMPUTATIONWORLD 2024

HERWIG MANNAERT,
TIM VAN WAES, FREDERIC HANNES

APRIL 15, 2024

Universiteit Antwerpen

Intro on myself & my work

e Electronics engineer, PhD in computer vision

e Co-created Normalized Systems Theory on engineering and architecture of
evolvable software systems, i.e., enabling systems to cope with change

e Books and papers (140 publications), and YouTube channel

e Human adoption

e Spin off company with 55 software engineers

e > 65 software engineers at customers / partners
e Software production

e Suite of code generators and tools

 Many software projects AND products, e.g.,

e Energy monitoring and management suite
e Command & Control Centre for medical drone transport

e Full professor at University of Antwerp, not an esteemed researcher

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory
The Case of an NST Rejuvenation Factory

Conclusion and Future Work

L\.

Overview

\\

\"

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory
The Case of an NST Rejuvenation Factory

Conclusion and Future Work

L\.

Overview

\

\\" \

Introduction

e Agile paradigm has become default methodology in software

* There is a widespread belief in various benefits
e E.g. timely delivery

 However, some disadvantages could be argued
e E.g. increase of technical debt

 Normalized Systems Theory aims to improve evolvability through
normative structure of software skeletons

* We investigate the balancing of evolvable architecture and agile design
through the case study of an agile NST software factory

- DSR: Observational case study aiming to contribute to the rigor cycle

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory Overview /
The Case of an NST Rejuvenation Factory '

Conclusion and Future Work

Software Maintenance and Evolvability

e Software maintenance is intimately related to evolution as a large part is
about non-corrective actions anf functional enhancements

* In depth studies of Manny Lehman lead to:
e |nsight that maintenance is evolutionary development
e Formulation of Lehman’s Laws, including Law of Increasing Complexity

e Traditionally not much attention within IS community

e Recent more attention through the introduction of
e Technical debt
 Maintenance debt

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory Overview /
The Case of an NST Rejuvenation Factory '

Conclusion and Future Work

Design Theorems for Stable Software &

* In order to avoid dynamic instabilities in the software design cycle, the
rippling of changes needs to be depleted or damped: a =0

e As these ripples create combinations of multiple changes for every
functional change, we call these instabilities combinatorial effects

e Demanding systems theoretic stability for the software transformation,
leads to the derivation of principles in line with existing heuristics

e Adhering to these principles avoids dynamic instabilities, meaning that
these principles are necessary, not sufficient for systems stability

S
Software Elements for Stable Skeleton Structures ’:;2~

\ 4

e Element structures are needed to interconnect with CCC solutions

* NS defines 5 types of elements, alighed with basic software concepts:
e Data elements, to represent data variables and structures
e Task elements, to represent instructions and/or functions
* Flow elements, to handle control flow and orchestrations
e Connector elements, to allow for input/output commands
» Trigger elements, to offer periodic clock-like control

* |t seems obvious to use code generation techniques to create instances
of these recurrent element structures

e Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

e,

73\ Skeletons Utilities N\ Jransaction

Separating the Dimensions of Variability ’:;.s

Mirrors \Access Control
Invoice 1
-Number \, Persistenc
Order -Order %
-Ref [l [
-Product

(Createlnvoice }
(ProcessOrder)
(Sendlnvoice)

Craftings

O@OO
_) <& Oo)

S ()
. .)
- D O 4

Codebase

The Premise of Normalized Systems Theory

* Variability Dimensions

Mirrors

X\ Skeletons Utilities \\ Iransaction N
\ \Access Control

Invoice Il
~Numb _P B
\\ ersisten
Order _Order 9 &Y \
-Ref -
-Product
Createl
Process Order
Sendlinvoice

Craftings

- e ——
Feature 1 L . L -
— # “\ - >,
e ~ J \ "
- H ! \/ A
e RS]
" [l ["\
s L ! \ b [RY ' 1
I e ! A AN] \
\, =] ’ .
! P4 .

- >,

i
]
1
!
i
[}

S
H o L Y 1
re N i i e -~ - H
/ “ ! T { el i
i A\ [} i X, > H
\ ! I -, ~
A LY i ..
1 . s s
1 \, S . .
A
A
LY
AY
S,

] ~— s
1 -)
:) R
] - o T — o/
,r // o - el Nt
7 ; s { -
\ s (D - \ O \
S’ ™ o . "

e

Codebase

The Essence of Variability Dimensions

* We identify four dimensions of variability:
* Models or mirrors, new data attributes/relations, new elements
e Expanders or skeletons, new or improved implementations of concerns
* Infrastructure or utilities, new frameworks to implement various concerns
e Custom code or craftings, new or improved implementations of tasks, screens

 |[f separated and well encapsulated
e Number of versions to maintain is additive: #V = #M + #E + #I + #C
 Number of versions available is multiplicative: #V = #M x #E X #I x #C
e Where the same holds within any individual dimensions,
e.g., infrastructure dimension: #1 = #G X #P x #B X #T

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory Overview /
The Case of an NST Rejuvenation Factory '

Conclusion and Future Work

O‘Q

Integrating Expansion in a Software Factory :030’

 More industrial assembly of software has been pursued for decades
e Mass produced software components
e Software product lines
e Software factories

e Systematic reuse of software still faces many issues

 More challenging in a code generation environment
 MDE, MDA
* LCDP, NCDP

e NST software factory needs to support
e Harvesting and Re-injection

Jenkins

sonar \
Qube

OPERATE

G

nexus
repository

AAAAAAA

From CI/CD to Continuous Rejuvenation

 Need for an expansion cycle before the build phase

(" Repository)
? y . Expand Codebase Build Artifacts
[Model . . .
Expansion Source code Runtime Runtime Libs Servers
[. Resources and scripts Libraries Executables Deploy App Servers
Images 1Services
meete, | __Images | +)
v ¥ 7y
{ Harvest | Analyze ' N >(Reports)
[Analyze Codin
Test > &
A 4 v Testing
[Config settings}—)% Libraries

g 4 \—/

A
il
Y
i
Dﬂ
A

L4
[Automation server]

Normalized Systems Rejuvenation Modes

e Structural rejuvenation along dimensions of variability

 Upgrading external frameworks to new versions
e Standard practice
e NST may facilitate evolution of interface code

e Upgrading expander skeletons to new versions
 From bug fixes to code improvements
e To adding features and functionality

e Upgrading infrastructure to new frameworks
* For existing or new cross-cutting concerns
e For entire application landscapes

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory Overview /
The Case of an NST Rejuvenation Factory '

Conclusion and Future Work

The Case of an NST Rejuvenation Factory

e Structural rejuvenation

e According to different modes
e For single, significant observation
 Under normal market conditions

Application Domain Age Data Model | Custom Code
(vrs) (Nr. elem.) (Size kByres)
Energy Monitoring > 10 116 6,352
3—5 38 1,010
Power Grid Management 1—3 106 10,642
Human Resource Services 3—5 940 12,103
3—5 39 1,433
Real Estate Services > 10 491 70,449
1—3 331 1,412
Unmanned Aviation 5 — 10 30 4,230
Traffic Management 1—3 134 2.896
Learning Management 1—3 133 1,794

TABLE I. Domain, lifespan, model and custom size of various applications.

The Case of an NST Rejuvenation Factory

e Continuous development
e Applications in full or extended development
e Several applications have dedicated expanders
e Daily build and test, bi-weekly deployments

e Updating dependencies
e Similar to traditional CI/CD, cadence as above

e Rejuvenating skeletons
e Expanders follows same cadence
e Rejuvenated skeletons in production (bi-)monthly

e Structural rejuvenation of skeletons across application landscape, the CI/CD/CR
has only been realized the last 4 to 5 years

The Case of an NST Rejuvenation Factory

e Replacing technologies

e Throughout the years, support has been introduced in logic/data layer for
e Additional databases
e Additional providers for transactions, persistency, access control
 In the early years, systematic migrations have been done in view/control layer
e MVC = MVC: Cocoon to Struts2
e MVC =2 MVC-MVVM: Struts2 to Struts2/Knockout
* In recent years, technologies were introduced without systematic migration
e JAX-RS in control layer
* Angular in view layer

e Systematic migration seems to be hampered by discipline creep

Toward a Rejuvenation Factory for Software Landscapes

Introduction

Software Maintenance and Evolvability

The Premise of Normalized Systems Theory
A Normalized Systems Software Factory Overview /
The Case of an NST Rejuvenation Factory ‘

Conclusion and Future Work

o

Conclusion and Future Work ,030’

* We have presented an observational case study to evaluate the realization
of the envisioned evolvability characteristics in an agile state-of-the-art NST
software factory

e Contributions:
e Described application of NST at scale in agile software factory
e Validated that some levels of evolvability can be operationalized
e |dentified a concern that may hamper evolvability in realistic environment

e Limitations:
e Case study factory was set up in the NST spin-off company
e Software factory has only been operating at scale for a few years

* We plan to continue this study
* |In an extended time period
e Operating at an increasing scale

QUESTIONS ?

herwig.mannaert@uantwerp.be

