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* Lei's research primarily focuses on the application of Graph Neural
Networks (GNNs) for stock market prediction. This innovative
approach involves leveraging the power of GNNs to model and
analyze complex relationships and interactions within financial
markets.




Why GNN for stock prediction?

* Traditional forecasting models like ARIMA[1] and GARCH|[2] face
limitations due to the market's nonlinear evolution.

* Deep learning, especially GNN[6], surpasses these methods by
handling diverse data types and capturing complex, non-linear
relationships between stocks.

* GNN enables relational reasoning, improving performance by
incorporating stock relationships into prediction models.



Contributions of our paper

* A comprehensive review of current literature on stock market
predictions using various approaches, with a focus on GNN based
stock prediction approaches.

* Proposal of a novel classification framework and taxonomy for GNN-
based stock market prediction methods.

* |dentification of potential research gaps and future directions in the
field.




Classification Framework

* Introduction of a novel classification
framework analyzing approaches from
three aspects: Model Architecture,
Dataset Features, and Graph
Construction Method.

* The framework facilitates
categorization and deeper analysis of
existing works, promoting a structured
approach to reviewing GNN
applications in stock prediction.
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Model Architecture

* |dentification of three
main types of model
architecture:

* RNN-GNN
* |lterative RNN-GNN

* Parallel RNN | | GNN
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Datasets Features

Examination of the types of data used in GNN models for
stock prediction, including numeric and text data.

Numeric Data: Includes historical prices, volumes, and
other quantitative metrics from stock markets.

Datasets: CSI300, S&P500, and others, providing
foundational data for models to analyze past trends and
forecast future stock movements.

Text Data: Incorporates unstructured data like news
articles, financial reports, and social media sentiment,
requiring NLP techniques for analysis.

Example: The integration of financial news and social
media data in models such as MAN-SF[25] demonstrates
the value of text data in capturing market sentiments and
external factors affecting stock prices.
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Graph Construction Method

* Overview of three primary
methods for graph
construction:

* Correlation-based graph
* Knowledge-based graph

* Similarity-based graph
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Graph Construction Method

* Correlation-based: Builds graphs based on the statistical relationships between stocks,
using metrics like price correlations to connect nodes.

* Chen et al.[7] used in models to understand direct stock-to-stock influences, facilitating the
prediction of market movements based on historical price data correlations.

* Knowledge-based: Leverages domain knowledge or external information sources, such as
industry sectors or company fundamentals, to construct the graph.
* HATs[26] model uses Wikidata to construct a heterogeneous graph, analyzing complex entity
relationships beyond mere statistical correlations.

» Similarity-based: Constructs graphs by identifying similarities among stocks, often using
measures like cosine similarity or Euclidean distance, to map implicit stock relationships.

* LSTM-RGCN[24] model employs similarity scores to build graphs, enabling the detection of nuanced
patterns and dependencies among stocks not directly related through common metrics.



Approaches - Model Architecture
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* RNN-GNN Architecture

* Models combining Recurrent Neural Networks (RNN) with Graph Neural Networks (GNN) to encode both
time series data for capturing temporal sequences and graph-based data for understanding stock
interrelations.

* Chen et al.[7] proposed a model integrating LSTM for time series analysis and GCN for node classification,
highlighting how combining these architectures leverages both temporal and relational data for stock
prediction.




Approaches - Model Architecture

"+ Temporal = TR | e
Stock 1 coder \ers Bilinear (Graph Attention Network —— Node Classification
Transformation — } I
"+ Temporal -
Stock 2 SLUM ention ~ o WHx;, §
| 8 S
. X1 {e@| ;
Price Sto.c b W + Temporal - - @ a1 ‘ . Stock 1
Information Wil Attention W*x,, Apple ® ) " @ %z " Stock 2
( Ul
: // W Xj2 aj2 S .
 x 7 I i
+ Hierarchical ;
Stock 1 Text Encoder |RyYar : e \ Leaky @ )
; Google \\ Alibabal @ RelLU Qjj3 . .
+ Hierarchical \ WX ajj i
Stock 2 Text Encoder : () I3 i3
A 8
p ttention \ <o Stock n
. . . O
Social Media . R / X, Feed Forward Movement Prediction
Textual Stock n Text Encoder [N Ciscol © Neural Net (a)

Information

* RNN-GNN Architecture

* Sawhney et al.[25]propose a Multipronged Attention Network for Stock Movement Prediction (MAN-SF)by
learning from historical prices, social media, and inter-stock relations. It is made up of a hierarchical
attention network and a graph attention network.

* GRU is used as a Price Encoder (PE) that takes the prices of a stock over a period of time and uses that to
produce a price feature. The temporal attention mechanism is a way of aggregating information from
different time steps into an overall representation. This is done by assigning learned weights to each time
step, which allows the most important information to be aggregated together.




Approaches - Model Architecture
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* |terative RNN-GNN Architecture

* This architecture involves deeper integration between RNN and GNN components, allowing for iterative
information exchange and enhancing the model's ability to capture complex relationships between
temporal and relational data.

* Lietal’s[24] LSTM-RGCN model predicts stock movements by first encoding news data into vectors with
LSTM and then using RGCN to encode the graph structure, demonstrating the power of iterative
architecture in leveraging news-related stock correlations.




Approaches - Model Architecture

——T — ——

Il IR
98- @

Media news Qu

N 21 # ¢

+1

Company A

QQ: e

Company B

1 =8MP(} || h)
=Softmnx(W., |3 || ] +be., )

VS

<okl (B
k/ (b) Intra-class attention 4 g o+
£ f f=—§z;:.!n(vf

Update compd
2, Z kb - @

— —2n‘*bs

I3
=
? =

g

Prediction

00 @ji

[@7,@".D]
Company N Mutimodal features fusion

Final

g8 o

e S g T
( I) Leaming Stock Sequential Embeddings (II) Leaming Stock Relational Embeddings (I) Stock Movement Prediction

* Parallel RNN-GNN Architecture

* Features parallel processing of RNN and GNN components to capture both temporal and relational information
simultaneously, offering a comprehensive approach to stock market prediction.

e

* Zhao et al.'s[23] Dual Attention Networks (DANSMP) leverage a market knowledge graph and dual attention
mechanisms to understand stock momentum spillover, showcasing the effectiveness of parallel architectures

in analyzing complex market dynamics.




Approaches — Comparison

TABLE [: Comparison model & metrics between articles

Framework Model Dataset Graph relationships AUX DATA
ICR-GCN LSTM-GCN CSI300 Stock-Stock Financial investment fact from WIND
HATS RNN-GAT S&P500 Stock-Stock Wikidata
Stock-Owner
TGC LSTM-TGC NASDAQ Stock-Stock Wikidata
NYSE
MAN-SF GRU-GAT S&P500 Stock-Stock Wikidata
Stock-Owner
RGCN LSTM-RGCN TPXS500 Stock-Stock News
TPX100
DANSMP GRU-DAN CSI100E Stock-Stock News
CSI300E Stock-Owner

Owner-Owner




Conclusion and future work

* GNNs show significant potential in overcoming the limitations of
traditional stock market prediction models by leveraging complex
stock relationships.

* The survey lays the foundation for future research in GNN-based
stock prediction, highlighting the need for further exploration of
dynamic graphs and integration with other deep learning techniques.
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