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• Lei's research primarily focuses on the application of Graph Neural 
Networks (GNNs) for stock market prediction. This innovative 
approach involves leveraging the power of GNNs to model and 
analyze complex relationships and interactions within financial 
markets.



Why GNN for stock predic5on?

• TradiPonal forecasPng models like ARIMA[1] and GARCH[2] face 
limitaPons due to the market's nonlinear evoluPon.

• Deep learning, especially GNN[6], surpasses these methods by 
handling diverse data types and capturing complex, non-linear 
relaPonships between stocks.

• GNN enables relaPonal reasoning, improving performance by 
incorporaPng stock relaPonships into predicPon models.



Contributions of our paper

• A comprehensive review of current literature on stock market 
predicPons using various approaches, with a focus on GNN based 
stock predicPon approaches.

• Proposal of a novel classificaPon framework and taxonomy for GNN-
based stock market predicPon methods.

• IdenPficaPon of potenPal research gaps and future direcPons in the 
field.



Classification Framework

• Introduction of a novel classification 
framework analyzing approaches from 
three aspects: Model Architecture, 
Dataset Features, and Graph 
Construction Method.
• The framework facilitates 

categorization and deeper analysis of 
existing works, promoting a structured 
approach to reviewing GNN 
applications in stock prediction.
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Model Architecture

• IdenPficaPon of three 
main types of model 
architecture: 

• RNN-GNN

• IteraPve RNN-GNN

• Parallel RNN || GNN



Datasets Features

• Examination of the types of data used in GNN models for 
stock prediction, including numeric and text data.

• Numeric Data: Includes historical prices, volumes, and 
other quantitative metrics from stock markets.

• Datasets: CSI300, S&P500, and others, providing 
foundational data for models to analyze past trends and 
forecast future stock movements.

• Text Data: Incorporates unstructured data like news 
articles, financial reports, and social media sentiment, 
requiring NLP techniques for analysis.

• Example: The integration of financial news and social 
media data in models such as MAN-SF[25] demonstrates 
the value of text data in capturing market sentiments and 
external factors affecting stock prices.



Graph Construc5on Method

• Overview of three primary 
methods for graph 
construction: 

• Correlation-based graph

• Knowledge-based graph

• Similarity-based graph



Graph Construc5on Method

• Correla'on-based: Builds graphs based on the sta's'cal rela'onships between stocks, 
using metrics like price correla'ons to connect nodes.
• Chen et al.[7] used in models to understand direct stock-to-stock influences, facilita:ng the 

predic:on of market movements based on historical price data correla:ons.

• Knowledge-based: Leverages domain knowledge or external informa'on sources, such as 
industry sectors or company fundamentals, to construct the graph.
• HATs[26] model uses Wikidata to construct a heterogeneous graph, analyzing complex en:ty 

rela:onships beyond mere sta:s:cal correla:ons.

• Similarity-based: Constructs graphs by iden'fying similari'es among stocks, oCen using 
measures like cosine similarity or Euclidean distance, to map implicit stock rela'onships.
• LSTM-RGCN[24] model employs similarity scores to build graphs, enabling the detec:on of nuanced 

paOerns and dependencies among stocks not directly related through common metrics.



Approaches - Model Architecture

• RNN-GNN Architecture

• Models combining Recurrent Neural Networks (RNN) with Graph Neural Networks (GNN) to encode both 
Yme series data for capturing temporal sequences and graph-based data for understanding stock 
interrelaYons.

• Chen et al.[7] proposed a model integraYng LSTM for Yme series analysis and GCN for node classificaYon, 
highlighYng how combining these architectures leverages both temporal and relaYonal data for stock 
predicYon.
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Approaches - Model Architecture

• RNN-GNN Architecture

• Sawhney et al.[25]propose a MulYpronged A\enYon Network for Stock Movement PredicYon (MAN-SF)by 
learning from historical prices, social media, and inter-stock relaYons. It is made up of a hierarchical 
a\enYon network and a graph a\enYon network. 

• GRU is used as a Price Encoder (PE) that takes the prices of a stock over a period of Yme and uses that to 
produce a price feature. The temporal a\enYon mechanism is a way of aggregaYng informaYon from 
different Yme steps into an overall representaYon. This is done by assigning learned weights to each Yme 
step, which allows the most important informaYon to be aggregated together.



Approaches - Model Architecture

• Itera3ve RNN-GNN Architecture 

• This architecture involves deeper integraYon between RNN and GNN components, allowing for iteraYve 
informaYon exchange and enhancing the model's ability to capture complex relaYonships between 
temporal and relaYonal data.

• Li et al.’s[24] LSTM-RGCN model predicts stock movements by first encoding news data into vectors with 
LSTM and then using RGCN to encode the graph structure, demonstraYng the power of iteraYve 
architecture in leveraging news-related stock correlaYons.
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Approaches - Model Architecture

• Parallel RNN-GNN Architecture 

• Features parallel processing of RNN and GNN components to capture both temporal and relaYonal informaYon 
simultaneously, offering a comprehensive approach to stock market predicYon.

• Zhao et al.‘s[23] Dual A\enYon Networks (DANSMP) leverage a market knowledge graph and dual a\enYon 
mechanisms to understand stock momentum spillover, showcasing the effecYveness of parallel architectures 
in analyzing complex market dynamics.



Approaches – Comparison



Conclusion and future work

• GNNs show significant potenPal in overcoming the limitaPons of 
tradiPonal stock market predicPon models by leveraging complex 
stock relaPonships.

• The survey lays the foundaPon for future research in GNN-based 
stock predicPon, highlighPng the need for further exploraPon of 
dynamic graphs and integraPon with other deep learning techniques.
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