QTl_l REGENSBURG

Automated Vulnerability Scanner for the
Cyber Resilience Act

Sandro Falter, Gerald Brukh, Max Wess and
Sebastian Fischer (OTH Regensburg)

JAN

IARIA

JASSEAN

CLOUD COMPUTING 2024 - April 14, 2024 to April 18, 2024 - Venice, Italy

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Protessor tor "Computer Science and System Security” at OTH
Regensburg, Germany

Prof. Dr. Sebastian Fischer

since 2023

2021 - 2023 Lecturer at OTH Regensburg, Germany
2022 Dr. rer. nat. at Freie Universitat Berlin, Germany

2018 - 2021 Research Associate at Fraunhofer AISEC, Germany

2015 - 2018 Research Associate at OTH Regensburg, Germany
2015 M. Sc. Applied Research in Computer Science, OTH Regensburg

2013 B. Sc. Computer Science, OTH Regensburg

sebastian.fischer@oth-regensburg.de

mailto:sebastian.fischer@oth-regensburg.de

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Contents

 Cyber Resilience Act (CRA)

» (Challenges for manufacturers of loT products
* Presented Solutions

» CRA Compliance Checklist

* \ulnerability Scanner

 Conclusion / Outlook

Automated Vulnerability Scanner for the Cyber Resilience Act

Cyber Resilience Act (CRA)

@Il REGENSBURG

e [ntroduces new mandatory 4 Objectives
cybersecurity requirements for
hardware and software
products throughout the whole /A
ifecycle

* Regulation focuses on
produc"s With d|g|’[a| elements 1. Improve security 2. Ensure coherent

throughout the whole lifecycle framework for cybersecurity

» (Classification of products into

different classes + exclusion 3. Increase transparency g,f:;:;'grgir;ﬂig‘;?gita.
criteria of security features of products oroducts safely

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

 How to define requirements for a software that could assists
manufacturers with complying with the CRA"

Challenges for manufacturers of loT products

* Additional overhead for manutacturers to proof compliance

« How can compliance be proven to a third party?

l)

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

 Research Question: How could a software prototype look like, that assists
manufacturers with vulnerability detection to comply with the CRA"

Presented Solutions

* |dea: Introducing Software that performs compliance checks for [oT
devices

@ CRA Compliance Checklist

™ Vulnerability Scanner

Automated Vulnerability Scanner for the Cyber Resilience Act

CRA Compliance Checklist

@Il REGENSBURG

A tool to determine the current cyber security standard and to monitor
compliance with the requirements of the Cyber Resiliance Act

 Documentation on the current status and the degree of compliance with
the regulation

* Tips and information on compliance with the requirements

 ——

v Fronlend) \ 4 \ f, Backend)
User Device) o l/’ ’_ % “\\;
- \‘u’ \‘\‘ _.,-'/
e —— Viaw Vue Store €—JSON (hilp)—>»
-~ 3 € JSON (hitp H Y “ [~ |
l Srowser e -
N _ . ~— -
I ’ Datenbank
S
Reactive, Questions
User Interface, temporary and logic

Visualization/ \ database for criteria

Automated Vulnerability Scanner for the Cyber Resilience Act

CRA Compliance Checklist

@Il REGENSBURG

e.q. Checklist:

* [sthe product delivered without
known exploitable weak points”?

Sicherheitseigenschaften des Produkts

e Yes/No S0

« Comments (for documentation)

11 Gat on vin sehare Vandar @ enlge ian vt sner Miglobban nam Jwrwibsetoes sl da Sands

e Further Information

11 Sl AvtdarmaPalinungs Mevtita s sder Jugaragrent wabengpaysiorva sem Lduls vie wnbalogn
S .

. -

11 Send gevpmichar e varwandete adder wbmrmtede persanicbe ewvarte Daten @ h maoderste |

‘”‘

Automated Vulnerability Scanner for the Cyber Resilience Act

QIR REGENSBURG

Vulnerability Scanner

Functional Requirements Non-Functional Requirements

Vulnerability Reporting Usability: Should enable non-developers,
like project managers, to track the
security status of the project

Software Bills of Materials Deployment: Easy installation
procedure, ability to deploy on all
platforms

Languages: C, C++ and Python Development Process: Should be

integrated into the development process

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Vulnerability Scanner

A Architecture: Microservice Architecture + REST Interface
comme Backend: Python + FAST AP

Frontend: Vue.js

— Vulnerability Scanning: SBOMs (Syft + OSS Index), Static Application
HEE Security Testing (SAST) Tools (e.g Semgrep)

Automated Vulnerability Scanner for the Cyber Resilience Act

Vulnerability Scanner

@Il REGENSBURG

H—_—————]
e——d

Git Hub API
HTTP
User PC

<<execution environment>>

Docker ;

- Container

<<grtifact>>
Vue.js Frontend
<<execution environment®$ _
Web Browser Container
HTTP NGINX reverse proxy ——
Container

- <<artifact>>

Vulnerability

. CRA
Filesystem || gcanner Backend

HTTP

sonartype OSS
Index API

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Vulnerability Scanner

Variety of different scanners
exit on the market

Scanners ___ Final Selection

Preselection based
Sonar Qube on criteria Must support C, C++, Cppcheck

Frama-C Python Flawfinder
CppCheck :> Open Source Horusec

: Can handle nested file
FIanlnder STIETG Semgrep

Can run without
library dependencies

Project still
maintained

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Ground Truth Data Methodology

Vulnerability Scanner

E = synthetic test data
= 64099 Test Cases

1. Preprocess Q 3. An.alyz.e
Ground Truth Reﬁc;snorles
, _ = Published by National : with Scanners
Juliet Test Suite Institute of Standards and Z'DE‘::S;?;" l
for C++1.3.0 Technology (NIST)
h o
= 4. Load
S Results into
1 Database

[\

r = real project Ground Scanner
= |27 test cases Truth Results
- 5. Compare
v 1] 1 Recults with

Wireshark 1.8.0 X |:| « |:| G;?Jltf;d
v —]]

Automated Vulnerability Scanner for the Cyber Resilience Act

Vulnerability Scanner

Problem

Scanners: have different output

formats, include different
information (e.g Severity, CWE-

Mapping)

Assumption: If a hit of scanner

matches the exact file and line of
a flaw in the ground truth data,

then this is considered a true
positive

@Il REGENSBURG

Evaluation Procedure - Matching Lines

v/ True Positive

Ground Truth Scanner Result

File x line 12 |«» | File xline 12

X False Positive

Ground Truth Scanner Result

File x line 12 |«» | File x line 13

Automated Vulnerability Scanner for the Cyber Resilience Act

Vulnerability Scanner

@Il REGENSBURG

Juliet Test Suite: LoC - 28 394 004, 40 626 Flaws

True Positives per Scanner for Juliet Test Suite

10000 -

8000 -

6000 -

True Positives

4000 A

2000 A

11159

3662

False Positives

False Positives per Scanner for Juliet Test Suite

189617
175000 A
150000 -
125000 -+
100000 -
75000 -
50000 A
25000 -
) 7191 9556
. , s B
< C N-
| Qb‘?' & ‘\c" q&Q
& ¢ S 3
((\0 Q\ (_,Q (’?

Scanner

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Vulnerability Scanner

Wireshark: LoC -1 007 501, 767 Flaws

True Positives per Scanner for Wireshark False Positives per Scanner for Wireshark
14 - 14 1466
1400 -
12 -
1200 -
10 -
; _ 1000 -
: g
g 8 G 800 -
& &
QL @
2 6 “
= © 600 -
4 400 -
2 7 200 -
0- 0 0 0 0-
60 (o@(’ &Q,Q @é‘
& N S &
3 P & Q
((\’b (’)6 (JQ

Scanner Scanner

Automated Vulnerability Scanner for the Cyber Resilience Act

Vulnerability Scanner

True Positive Rate

Juliet Test Suite Scanner Scoring

1.097 e Flawfinder
| Horusec
A Cppcheck
0.841 @ Semgrep
..... f(x) = X
0.6 -
0.4 -
O
0.2 -
A
001 &
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

@Il REGENSBURG

Results:
- Flawfinder performed best

- followed by CppCheck

In general:
- SAST Scanners have problems

finding most of the
vulnerabilities, especially with
non-synthetic data

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

o SAST Scanners like Semgrep, Flawfinder perform pattern matching

Vulnerability Scanner

* Quality of the scan depends on variety, number and quality of the patterns

e (Certain vulnerabilities cannot be expressed with simple patterns

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Conclusion / Outlook

Summary:

Summarizing the CRA and deriving requirements for a vulnerability scanning tool

Creating a proof-of-concept that implements and visualizes vulnerabilities

Creating a methodology to verify performance of the tool

CL KX

Comparing the performance of multiple SAST scanners

Future Directions:
SAST Tools are very helpful early in the design stage to find vulnerabilities in the code

* Implement new rulesets to detect more severe vulnerabilities
= New approaches: deep learning-based pattern matching

% Reverse Engineering:
K2 « often, customers don’t have access to the respective code - enable vulnerability detection by

reverse engineering the code

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

Conclusion / Outlook

Summary:

Summarizing the CRA and deriving requirements for a vulnerability scanning tool

Creating a proof-of-concept that implements and visualizes vulnerabilities

Creating a methodology to verify performance of the tool

CC KX

Comparing the performance of multiple SAST scanners

Future Directions:
SAST TOOIS maton sronnns Inaleoafeiel Aameler foe Sla e AdAarmismess ol man &mn o JE RN P raneN ' e |n the COde

* Implemer
= New appr

Q
a) -> Toolkit for the CRA

= often, cus rability detection by
reverse engineering the code

Automated Vulnerability Scanner for the Cyber Resilience Act

@Il REGENSBURG

References

[1] R.Lemos, “Security Guru: Let’s Secure the Net,” 2024, [Online; accessed: 2024-02-27]. URL https://www.zdnet.com/article/security-guru-lets-secure-the-net/
[2] S.Ahmed, M. Carr, M. Nouh, and J. Merritt, “State of the Connected World,” Tech. rep., World Economic Forum, Jan. 2023.

[3] European Commission, “Regulation of the European Parliament and of the Council on horizontal cybersecurity requirements for products with digital elements and amending Regulation (EU) 2019/1020,” 2022, [Online;
accessed: 2024-02-27]. URL https://eur- lex.europa.eu/legal- content/ENTXT/?uri=celex: 52022PC0454

[4] C. Skouloudi, A. Malatras, R. Naydenov, and G. Dede, “Guidelines for Securing the Internet of Things,” Tech. rep., ENISA, 2020.

[5] ENISA, “Baseline Security Recommendations for IoT in the Context of Critical Information Infrastructures,” Tech. rep., European Union Agency For Network And Information Security, Nov. 2017.

[6] J.P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Compliance Checking of Software Processes: A Systematic Literature Review,” Journal of Software: Evolution and Process, 34(5), p. €2440, 2022, ISSN 2047-7481,
doi:10.1002/smr.2440.

[7] M. Barati, G. Theodorakopoulos, and O. Rana, “Automating GDPR Compliance Verification for Cloud-hosted Services,” in 2020 Inter- national Symposium on Networks, Computers and Communications (ISNCC), pp. 1-6,
Oct. 2020, doi:10.1109/ISNCC49221.2020.9297309.

[8] J.F. Carhas, S. Arrizabalaga, L. Labaka, and J. Hernantes, “Cyber Resilience Self-Assessment Tool (CR-SAT) for SMEs,” IEEE Access, 9, pp. 80741-80762, 2021, ISSN 2169-3536, doi:10.1109/ACCESS.2021. 3085530.
[9] RiskOptics, “RZenGRC,” 2024, [Online; accessed: 2024-02-27]. URL https://reciprocity.com/product/zengrc/

[10] cloudsmith, “cloud native artifact management,” 2024, [Online; ac- cessed: 2024-02-27].
URL https://cloudsmith.com/product/cloud-native-artifact-management

[11] F. Lombardi and A. Fanton, “From DevOps to DevSecOps Is Not Enough. CyberDevOps: An Extreme Shifting-Left Architecture to Bring Cybersecurity within Software Security Lifecycle Pipeline,” Software Quality Journal,
31(2), pp- 619—-654, Jun. 2023, ISSN 1573-1367, doi: 10.1007/s11219- 023- 09619- 3.

[12] “VuelJs,” 2024, [Online; accessed: 2024-02-27]. URL https://vuejs.org/

[13] “Git,” 2024, [Online; accessed: 2024-02-27]. URL https://git-scm.com/

[14] “Anchore/Syft,” Anchore, Inc., Jan. 2024.

[15] “Semgrep — Find Bugs and Enforce Code Standards,” 2024, [Online; accessed: 2024-02-27]. URL https://semgrep.dev/

[16] “Flawfinder Home Page,” 2024, [Online; accessed: 2024-02-27]. URL https://dwheeler.com/flawfinder/

[17] “Cppcheck - A Tool for Static C/C++ Code Analysis,” 2024, [Online; accessed: 2024-02-27]. URL https://cppcheck.sourceforge.io/

[18] “Horusec,” 2024, [Online; accessed: 2024-02-27]. URL https://horusec.io/site/

[19] “Docker: Accelerated Container Application Development,” May 2022, [Online; accessed: 2024-02-27]. URL https://www.docker.com/

[20] “GitHub:Let’sBuildfromHere,”2024,[Online;accessed:2024-02-27]. URL https://github.com/

[21] S. Inc, “Sonatype OSS Index,” 2024, [Online; accessed: 2024-02-27]. URL https://ossindex.sonatype.org/

[22] C.Gentsch, “EvaluationofOpenSourceStaticAnalysisSecurityTesting (SAST) Tools for C,” Technical Report DLR-IB-DW-JE-2020-16, DLR German Aerospace Center, Jan. 2020.

[23] National Institute for Standards and Technology, “Juliet C/C++ 1.3 - NIST Software Assurance Reference Dataset,” 2017, [Online; accessed: 2024-02-27].URL https://samate .nist.gov/SARD/test-suites/112
[24] National Institute for Standards and Technology, “Wireshark 1.8.0 - NIST Software Assurance Reference Dataset,” 2014, [Online; accessed: 2024-02-27].URL https://samate.nist.gov/SARD/test-suites/94
[25] D. A. Wheeler, “Flawfinder/Flawfinder.Py at Master - David- a-Wheeler/Flawfinder - GitHub,” https://github.com/david-a- wheeler/flawfinder/blob/master/flawfinder.py.

[26] “Semgrep-Rules/c/Lang/Security at Develop - Semgrep/Semgrep- Rules - GitHub,” https://github.com/semgrep/semgrep- rules/tree/develop/c/lang/security.

