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e [ntroduces new mandatory 4 Objectives
cybersecurity requirements for
hardware and software
products throughout the whole /A
ifecycle

* Regulation focuses on
produc"s With d|g|’[a| elements 1. Improve security 2. Ensure coherent

throughout the whole lifecycle framework for cybersecurity

» (Classification of products into

different classes + exclusion 3. Increase transparency g,f:;:;'grgir;ﬂig‘;?gita.
criteria of security features of products oroducts safely
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 How to define requirements for a software that could assists
manufacturers with complying with the CRA"

Challenges for manufacturers of loT products

* Additional overhead for manutacturers to proof compliance

« How can compliance be proven to a third party?

l)
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 Research Question: How could a software prototype look like, that assists
manufacturers with vulnerability detection to comply with the CRA"

Presented Solutions

* |dea: Introducing Software that performs compliance checks for [oT
devices

@ CRA Compliance Checklist

™ Vulnerability Scanner
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A tool to determine the current cyber security standard and to monitor
compliance with the requirements of the Cyber Resiliance Act

 Documentation on the current status and the degree of compliance with
the regulation

* Tips and information on compliance with the requirements
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e.q. Checklist:

* [sthe product delivered without
known exploitable weak points”?

Sicherheitseigenschaften des Produkts

e Yes/No S0

« Comments (for documentation)

11 Gat on vin sehare Vandar @ enlge ian vt sner Miglobban nam Jwrwibsetoes sl da Sands

e Further Information
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Vulnerability Scanner

Functional Requirements Non-Functional Requirements

Vulnerability Reporting Usability: Should enable non-developers,
like project managers, to track the
security status of the project

Software Bills of Materials Deployment: Easy installation
procedure, ability to deploy on all
platforms

Languages: C, C++ and Python Development Process: Should be

integrated into the development process
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Vulnerability Scanner

A Architecture: Microservice Architecture + REST Interface
comme Backend: Python + FAST AP

Frontend: Vue.js

— Vulnerability Scanning: SBOMs (Syft + OSS Index), Static Application
HEE Security Testing (SAST) Tools (e.g Semgrep)
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Vulnerability Scanner

Variety of different scanners
exit on the market

Scanners ___ Final Selection

Preselection based
Sonar Qube on criteria Must support C, C++, Cppcheck

Frama-C Python Flawfinder
CppCheck :> Open Source Horusec

: Can handle nested file
FIanlnder STIETG Semgrep

Can run without
library dependencies

Project still
maintained
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Ground Truth Data Methodology

Vulnerability Scanner

E = synthetic test data
= 64099 Test Cases

1. Preprocess Q 3. An.alyz.e
Ground Truth Reﬁc;snorles
, _ = Published by National : with Scanners
Juliet Test Suite Institute of Standards and Z'DE‘::S;?;" l
for C++1.3.0 Technology (NIST)
h o
= 4. Load
S Results into
1 Database

[ \

r = real project Ground Scanner
= |27 test cases Truth Results
- 5. Compare
v 1] 1 Recults with

Wireshark 1.8.0 X |:| « |:| G;?Jltf;d
v —] ]
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Vulnerability Scanner

Problem

Scanners: have different output

formats, include different
information (e.g Severity, CWE-

Mapping)

Assumption: If a hit of scanner

matches the exact file and line of
a flaw in the ground truth data,

then this is considered a true
positive

@Il REGENSBURG

Evaluation Procedure - Matching Lines

v/ True Positive

Ground Truth Scanner Result

File x line 12 |«» | File xline 12

X False Positive

Ground Truth Scanner Result

File x line 12 |«» | File x line 13
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Juliet Test Suite: LoC - 28 394 004, 40 626 Flaws

True Positives per Scanner for Juliet Test Suite
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Vulnerability Scanner

Wireshark: LoC -1 007 501, 767 Flaws

True Positives per Scanner for Wireshark False Positives per Scanner for Wireshark
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True Positive Rate

Juliet Test Suite Scanner Scoring

1.097 e Flawfinder
| Horusec
A Cppcheck
0.841 @ Semgrep
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False Positive Rate
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Results:
- Flawfinder performed best

- followed by CppCheck

In general:
- SAST Scanners have problems

finding most of the
vulnerabilities, especially with
non-synthetic data
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o SAST Scanners like Semgrep, Flawfinder perform pattern matching

Vulnerability Scanner

* Quality of the scan depends on variety, number and quality of the patterns

e (Certain vulnerabilities cannot be expressed with simple patterns
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Conclusion / Outlook

Summary:

Summarizing the CRA and deriving requirements for a vulnerability scanning tool

Creating a proof-of-concept that implements and visualizes vulnerabilities

Creating a methodology to verify performance of the tool

CL KX

Comparing the performance of multiple SAST scanners

Future Directions:
SAST Tools are very helpful early in the design stage to find vulnerabilities in the code

* Implement new rulesets to detect more severe vulnerabilities
= New approaches: deep learning-based pattern matching

% Reverse Engineering:
K2 « often, customers don’t have access to the respective code - enable vulnerability detection by

reverse engineering the code
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Conclusion / Outlook

Summary:

Summarizing the CRA and deriving requirements for a vulnerability scanning tool

Creating a proof-of-concept that implements and visualizes vulnerabilities

Creating a methodology to verify performance of the tool

CC KX

Comparing the performance of multiple SAST scanners

Future Directions:
SAST TOOIS maton sronnns Inaleoafeiel Aameler foe Sla e AdAarmismess ol man &mn o JE RN P raneN ' e |n the COde

* Implemer
= New appr

Q
a ) -> Toolkit for the CRA

= often, cus rability detection by
reverse engineering the code
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