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VVMethoden PEGASUS Family — Publicly-funded Projects in A Y i’
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Germany yARAN

» The PEGASUS Family focuses on development / testing
methods and tools for AD systems on highways VV-Methods R VERFCATON
and in urban environments

METHODS

» Scope: Methods, toolchains,

specifications for technical assurance

Eigﬁgisuspmiekt A ﬁ\ ﬁ\ « Use-Case: L4/5 in urban environments
- : - PEGASUS * Partners: 23 partners

« Scope: Basic methodological framework 5\5|LGYASUS * Timeline: 07/2019 — 06/2023
» Use-Case: L3/4 on highways
» Partners: 17

Hlevel
SET Level 4t05 Ed-mﬁ

» Scope: Simulation platform, toolchains,
definitions for simulation-based testing

» Use-Case: L4/5 in urban environments

 Partners: 20 partners

* Timeline: 03/2019 — 08/2022

+ future projects of the PEGASUS Family

2016 2019 2023
Time >



https://www.pegasusprojekt.de/en/home

VVMethoden — Project Setup 1 &A Y o

A Ontinental$

» Funded by Federal Ministry for Economic Affairs and Climate Actions (BMWK)

» Start - End 07/2019 - 12/2023

» Budget total 47ME€

» Objectives Development of methods and tools for the testing of highly automated and autonomous vehicles

(SAE level 4/5) for homologation in urban environments

» Partners /l\
O LO®ar > e

IUSW &) BOSCH Valeo - @ -

ALy PROSTER | dSPACE -

® bus

SC|ence ¢ UNIVERSITY

Z Fraunhofer

Continental Contribution Development of a In-Service Monitoring & Assessment System & prototype implementation
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Obijective: Monitoring, Data Collection & Assessment of an AD Vehicle during operation

» Monitoring
» to ensure that all safety risk controls are effective throughout the product life cycle

» and to identify and evaluate previously unknown unsafe events.
» Data Collection

» for analysis purposes
» Assessment

» to identify new safety risks

» to modify ineffective safety risk controls
» ..or to eliminate those that are no longer needed due to changes in the operational

environment.
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Related Work: Smart Monitoring A XY i
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Smart data monitoring and Safety standards Vi \

Data Selection Methods el meliod

- Temporal aggregation (Huang et al. 2018)
- Temporal consistency (Varghese et al. 2020)

Uncertainty methods:

- Softmax Entropy

- MC dropout (Gal & Ghahramani 2016) :
- MetaSeg (Rottmann et al. 2019) et ol i

cf. Pang et al. (2020)
Beghi et al. (2014)

Ensemble methods:
- Deep ensembles (Lakshminarayanan et al. 2017)
- Ensemble deep learning (Cao et al. 2020)




Related Work: Smart Monitoring A XY i

IARTA A7 0 N0\ METHODS
Smart data monitoring and Safety standards L \

Data Selection Methods
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Related Work: Testing approaches

Major testing approaches motivates this work
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Normal Driving Sudden breaking event Left turn Event: Camera view

Anomaly- Camera jittering Anomaly — Camera falling Low visibility




Content il
I A% A R METHODS

A (@ntinental

5.Examplary Trigger Development

VALID 2023 19




Data Preparation: wIATION
I A% A ﬂ METHODS

Event class definitions (Weakly supervised approach) [23] yAAN
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LCIassification Loss

° |/P - 16 frames/sample

o/P
Class lables L. .
Sensor Data preparation ® The Ol‘lglna| BDDlOOk dataset IS
using Image * Normal ;
Measurement ——eaiqy Supervised | Sequence 3D ConwNet  [——> . gpop grouped based on usecase using the
approach . _?udden Brake sensor data - Weakly Supervised
i urn
* Anomaly Approach
Fig 1: Training pipeline for Event Detection  Available sensor data - GPS,
accelerometer, gyroscope
* 3D ResNet-34 trained on BDD100k
dataset for Event Detection
1P o/P
Image Class lables * b5 classes - Stop, Sudden Brake, Turn,
Sequence » 3D ConvNet > . Normal Normal & Anomaly
+ Stop
* Sudden Brake
e Turn
*  Anomaly

Fig 2: Inference pipeline for Event Detection [23]
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BDD100k dataset

Fig 4: Video Sample - Sudden Brake

Fig 5: Video Sample - Turn

Fig 6: Video Sample - Anomaly

Normal — 3467 282 260 45 545
* Event Detection accuracy on the BDD100k val set 79.85%
stop —| 594 547 103 106
_ *  Weakly Supervised approch are less reliable
g Splaen 1 31 42 396 6 21
Turn — 11 9 13 1200 50
Anomaly — 114 17 45 56 287
| | | | |
Normal Stop Sudden Turn Anomaly
Brake
Predicted Label
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Results on Event Detection: II&/\X;‘;‘:{‘)‘EW
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ADAS (Conti) data
* Event Detection accuracy on the ADAS val set 77.79%
Normal 919 26 75 22 131
* The real-world samples where the instances can have multiple class
stop - 7 174 6 35 1 labels
% suoen | o 3 i , ] * Model recognized few anomaly events such as, vibrations due to the
g e unevenness of the road, low visibility, and blockage in the camera view
Tun— O 1 0 149 13
Anomaly — 0 0 0 0 0
I | I | I
Normal Stop Sudden Turn Anomaly

Brake
Predicted Label

Fig 7: Confusion Matrix for Event
Detection evaluated on ADAS data

(a) (b) (c) (d)
Fig 8: RGB frame in four video samples predicted as Anomaly event class in ADAS data
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* Given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set

* The unlabelled images may come from labelled classes or novel ones

Labelled classes Unlabelled classes
® ® e
® © ° ) ) o
T ) ) L) °

e e GCD/GED

Dimension 2

Dimension 2
°
°
®
o0

Dimension 1 Dimension 1

Fig 11: GCD setting. Black data points represent unlabelled instances.
Coloured data points represent labelled instances.
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Clustering Algorithm
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Results on Data for Event Discovery (BDD100k dataset) A R

IARIA METHODS

Group
Index 2
(Stop)
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Fig 18: RGB frames from video samples predicted as group index 2 and group index 5
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Results on Data for Event Discovery (BDD100k dataset)

Fig 19. Video Sample: Fig 20. Video Sample: Fig 21. Video Sample:
Group Index-2 Group Index-5 Group Index-2
Stop event Stop at traffic signal Finer Normal event
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Conclusion and Future works U&AXX:‘:‘::;:""

* The approach of In-Service Monitoring and Assessment is presented as a new method for safety validation
of highly automated driving

* State of the art works on verification and validation, different approaches for monitoring of HAD Systems
during operation is covered and that motivates the presented exemplary trigger development.

* Results are shown with both rule based, and data driven approach of triggers for Smart Monitoring to filter
out anomaly & unknown events for self adaptive systems like HAD.
Our future works includes:

* Exploration of appropriate set of triggers, define suitable metrices for their evaluation and context specific
trigger subset selection for improving validation systems during operation.

* Use of safety critical data for continuous learning and model improvement is also a topic needs further
study.
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