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Introduction

• Teeth segmentation and object detection are the core functions of these tools when applied to 
X-ray images. 

• Segmenting and detecting the teeth in images is actually the first step in enabling other 
automatic processing methods. 

• Medical image segmentation, especially in dentistry field, has been transformed by Deep 
Learning (DL) in recent years.



Introduction

• In recent years, there has been increasing interest in applying the Deep Learning (DL) models 
for medical image analysis. 

• The deep learning, typically the Convolutional Neural Network (CNN, or ConvNet) has made a 
significant contribution to the medical images analyzing tasks especially the segmentation. 

• Semantic segmentation methods based on DL have demonstrated state-of-the-art performance 
over the past few years. 

• In computer-assisted procedures topically aim to applied in dental clinics, teeth segmentation
is an essential step. 

• By using this technique, it is possible to provide approximate outline images of doubtful regions 
in order to provide features that can distinguish tooth tissues from other types of tissues.



U-Net For Teeth Segmentation

• It has been demonstrated that these techniques have been successful in classifying, 
segmenting, and detecting medical images. 

• For these applications, the U-Net[1] deep learning technique has become very popular.

• The U-Net shape with its variations and extensions (U-net++ [2], Resunet++[3]) has long been 
recognized as the dominant deep network architecture. 

• In this regard, it is the most widely used architecture in the medical imaging segmentation field. 



U-Net For Teeth Segmentation

• U-Net with its different extensions and modifications has been among the most popular 
deep networks developed for medical image segmentation. 

• However, it is difficult to determine which one 
will work best for teeth segmentation??



Purpose: 

• In this study, different semantic segmentation models are selected based on their common 
use in medical image segmentation. 

• Models include:

• We evaluate the performance and segmentation accuracy of these models using a pre-
request dataset provided by Intelligent Vision Research Lab (Ivisionlab).

• Based on the results presented in this paper, these methods can be used to improve the 
detection and segmentation of teeth in panoramic X-ray images.

Ø U-Net++
Ø ResU-Net++ 
Ø MultiResU-Net.



Methodology

• The dentist uses panoramic radiographs to obtain an overview of the entire mouth and 
jaw, including all the teeth, in dentistry. 

• It has been used to detect larger concerns like infections, impacted teeth, and tumors.
• There is a low resolution in panoramic radiography X-ray images, which contributes to 

noise in the images. 

• To process dental X-ray images, it is necessary to distinguish between the ROI and 
backgrounds.

• In this research we compare 3 different CNN models that used regularly in medical image 
segmentation task and evaluate their results using a publicly available dataset. 



Methodology
1- Models Architectures Overview:

(1)- U-net++ Architecture: 

• The U-net++ architecture [2] in terms of medical image segmentation, is a more powerful 
architecture. 

• There are several nested, dense skip pathways connecting the encoder and decoder sub-
networks in this architecture. 

• As a result of the redesign of the skip pathways, the semantic gap between the feature maps of 
the encoder and decoder sub-networks is reduced.



Methodology
1- Models Architectures Overview:

U-net++ Architecture: 



Methodology
1- Models Architectures Overview:

(2)- ResUNet++ Architecture: 
• The ResUNet++ Architecture [3] is based on the Deep Residual U-Net (ResUNet) [4], which is a 

deep residual learning concept combined with an U-Net. 

• There are three encoder blocks and three decoder blocks comprised of the ResUNet++ 
architecture. 

• An encoder block comprises two successive convolutional blocks of 3 × 3 and an identity 
mapping. 

• Consequently, channel interdependencies are improved while computational costs are reduced.



Methodology
1- Models Architectures Overview:

ResUNet++ Architecture: 



Methodology
1- Models Architectures Overview:

(3)- MutiResU-Net Architecture: 
• In MutiResU-Net architecture [5], a MultiRes block is proposed as a replacement for two 

convolutional layers. 

• The number of filters in the convolutional layers is controlled by a parameter within each MultiRes
block. 

• A MultiRes block has been proposed in order to enhance U-Net’s capability to analyze and 
assess data at multiple resolutions. 

• In some cases, there is a discrepancy between the features propagated through the encoder 
network and the features propagated through the decoder network. 



Methodology
1- Models Architectures Overview:

MutiResU-Net Architecture: 



Methodology
MutiResU-Net Architecture: 

Res Path



Methodology
2- Dataset and Ground Truth:

• It is noteworthy that panoramic X-ray images provide a greater degree of patient comfort than 
other radiographics, such as intraoral images (bitewing and periapical), and are less invasive, 
while examining a greater portion of the maxilla and mandible. 

• For dental image analysis, only a few datasets of panoramic X-ray images are publicly 
available.



Methodology
2- Dataset and Ground Truth:
Ø The UFBA-UESC dental images dataset was published by Silva et al., [6] to fill this gap,

and it has proven to be a valuable resource for the community. The original data set was 
published with annotations for semantic segmentation only, which utilizes binary masks to 
distinguish teeth from non-teeth pixels. 

Ø Jader et al., [7] modified the UFBA-UESC Dental Images dataset to include instance 
segmentation information, and a total of 276 images containing 32 teeth were used for training 
and validation, with the remaining 1224 images being used for testing.



Methodology
2- Dataset and Ground Truth:
Ø Recently, Silva et al., [8] from Ivisionlab they annotated 543 images with number information 

(including the 276 used by Jader et al., [7]) to evaluate semantic segmentation.

Ø The dataset for this paper was obtained from Ivisionlab1 [8] in order to perform our experiments . 

Ø In this dataset, total of 1500 panoramic X-ray images with high variability have been grouped into 
ten categories in this dataset.

Ø A combination of panoramic X-ray images and ground truth images is included in this dataset. 

1 https://github.com/IvisionLab/dns-panoramic-images



Methodology
2- Dataset and Ground Truth:

Figure 1: Three different simple panoramic X-ray images from Ivisionlab [6] alongside with their ground truth.



Evaluation and Assessment Metrics



Quantitative and Qualitative Comparison

• Qualitative analysis and comparison of 
the different CNN models using 
sample of panoramic X-ray images 
from IvisionLab dataset. Where:

Ø (First row): shows the original images,
Ø (Second row): ground truth, 
Ø (Third row): U-Net++, 
Ø (Fourth row): ResU-Net++ and
Ø  (Fifth row): MultiResU-Net 

segmentation results.



Quantitative and Qualitative Comparison

* Bold font indicates the best value.

• Quantitative comparison of different cnn modules applied to ivisionlab dataset:



Finding 

• It is noticable from Table I and Figure 2 that U-Net shape CNN models are quantitatively 
analyzed using IvisionLab data. 

• It is notable that MutiResU-Net outperformed compare with other methods with accuracy of 
97.16%. 

• This is because MutiResU-Net performs better on heterogeneous datasets than classical U-
Net.



The experiments were conducted using Python, more 
specifically Python3. Where in order to construct the network 
models, Keras was used with Tensorflow as the backend.

EXPERIMENTS



ü The results of our study indicate that MutiResU-Net 
may succeed the other U-Net architectures in the 
future, particularly when it comes to segmenting 
teeth from panoramic X-ray images.

Conclusion and Future Work



ü This experiment and assumption relied on a single 
dataset for the evaluation of different models, which 
could explain why MultiResU-Net performed better.

ü Future research should conduct experiments with 
different datasets to see whether this claim holds.

Conclusion and Future Work
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