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In our paper, we aimed at:
1. Overview of the two-stage object detectors
2. Provides a comparative performance analysis of many two-stage object

detectors.
Contributions of our study are threefold:
1. Presented a comparative performance analysis of two-stage object detectors
2. Evaluated the performance of different detectors on two datasets, MSCOCO and PASCAL VOC

2012.
3. We use the average precision AP0.5 and AP[0.5:95] on the above both datasets.
4. Results showed that DetectoRS outperformed all other two-stage models
5. DetectoRS achieved an AP0.5 of 53.30% and an AP[0.5:95] of 71.60% on MSCOCO.
6. DetectoRS achieved an AP0.5 of 83.00% and an AP[0.5:95] of 90.30% on PASCAL VOC 2012.

However, it is also more complex.
7. Other two-stage object detectors that performed well in the comparison include:
8. NAS-FPN, Mask R-CNN, and Cascade R-CNN.
9. These models also use various techniques to improve performance, such as region proposal networks

(RPNs), RoIAlign, and focal loss.

Aims and contributions of our paper



Introduction

 Deep convolutional neural networks (CNNs) have enabled
significant advances in object detectors.

 Provides a comparative performance analysis of many two-stage
object detectors:

1. Region-Convolution Neural Network (R-CNN)

2. Spatial Pyramid Pooling (SPP)

3. Fast R-CNN

4. Faster RCNN

5. Feature Pyramid Network (FPN)

6. R-FCN

7. Mask R-CNN

8. Cascade R-CNN

9. DetectoRS

10. Neural Architecture Search-Feature Pyramid Network (NAS-FPN)



Summary of How Detectors Work
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Detector Summary of how it works

R-CNN
Uses a selective search algorithm to generate candidate object regions, which are then classified and
localized using a convolutional neural network (CNN).

SSP-NET
A single-stage object detector that uses a CNN to predict bounding boxes and class probabilities for each
pixel in an image.

Fast R-CNN
An improved version of R-CNN that uses a shared convolution layer for all regions of interest (ROIs),
which speeds up computation.

Faster R-CNN
A further improvement over R-CNN that uses a region proposal network (RPN) to generate ROIs, which
further speeds up computation.

R-FCN
A single-stage object detector that uses a CNN to predict fully-convolutional networks (FCNs) for each
pixel in an image. These FCNs can then be used to predict bounding boxes and class probabilities for all
objects in the image.

FPN
A feature pyramid network that combines features from different layers of a CNN to improve the
accuracy of object detection for small objects.

Mask R-CNN An extension of Faster R-CNN that can also segment objects in an image.

NAS-FPN A neural architecture search (NAS) method for finding the optimal FPN architecture for a given task.

DetectoRS
A modular framework for object detection and other computer vision tasks. DetectoRS provides a
variety of different detectors, including R-CNN, Fast R-CNN, Faster R-CNN, R-FCN, and Mask R-
CNN.
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Two-Stage Object Detectors



COMPARATIVE PERFORMANCE ANALYSIS OF

TWO-STAGE OBJECT DETECTORS

TABLE I. TWO-STAGE OBJECT DETECTORS PERFORMANCE COMPARISON ON MS COCO AND PASCAL VOC 2012 DATASETS AT

SIMILAR INPUT IMAGE SIZES FOR THE TWO-STAGE OBJECT DETECTORS.

Detector & year Backbone Image Size AP[0.5:0.95] AP0.5

R-CNN, 2014 AlexNet
224 - 58.50%

SSP-NET, 2015 ZFNet
Variable - 59.20%

Fast-R-CNN, 2015 AlexNet, VGG16
Variable - 65.70%

Faster-R-CNN, 2016 ZFNet, VGG
600 - 67.00%

R-FCN, 2016 ResNet101
600 31.50% 53.20%

FPN, 2017 ResNet-101 800 36.20% 59.10%

Mask-R-CNN, 2018 ResNetXt101, FPN
800 39.80% 62.30%

NAS-FPN, 2019 ResNet-50 1280 48.3 -

DetectoRS, 2020 ResNeXt-101 1333 53.30% 71.60%
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A COMPARATIVE ANALYSIS OF THE PERFORMANCE

OF TWO-STAGE OBJECT DETECTORS.



Detectors, Pros, Cans, and Application
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Detectors Pros Cons Applications

R-CNN High accuracy Slow
Object detection and
instance segmentation

Fast R-CNN Faster than R-CNN
Less accurate than R-
CNN

Object detection and
instance segmentation

Faster R-CNN Fast and accurate
Requires a lot of training
data

Object detection and
instance segmentation

R-FCN Faster than Faster R-CNN
Less accurate than Faster
R-CNN

Object detection and
instance segmentation

FPN
Improves accuracy for
small objects

More complex than other
detectors

Object detection and
instance segmentation

Mask R-CNN
Can detect and segment
objects in a single stage

Less accurate than
Cascade R-CNN

Object detection and
instance segmentation

Cascade R-CNN Very accurate Slow
Object detection and
instance segmentation

NAS-FPN
Searches for the optimal
FPN architecture for a
given task

Can be time-consuming to
train

Object detection and
instance segmentation

DetectoRS
A modular framework for
object detection and other
computer vision tasks

Can be complex to use
Object detection, instance
segmentation, keypoint
detection, and more



Merit and Limitations of Detectors
Detector
& year

Merit and Limitations

R-CNN
2014

Merit: Has improved performance on the PASCAL VOC datasets better than HOG-based methods.

Limitation: It is slow and expensive to train because of its sequentially trained multistage pipeline.

SSP-NET
2015

Merit: accelerates R-CNN without sacrificing performance.

Limitation: SPP-Net inherits the disadvantages of R-CNN

Fast-R-
CNN 2015

Merit: Enhances performance over SPPNet by designing RoI pooling layer and eliminating disc storage for features.

Limitation: External RP computation becomes a bottleneck, and real-time applications are sluggish.

Faster-R-
CNN 2016

Merit: Introduces multi-scale regression anchor boxes, making it faster than Fast RCNN without sacrificing

performance.

Limitation: Real-time detection is slow, and training is hard due to the sequential training process.

R-FCN
2016

Merit It is a fully convolutional detector network that is faster than Faster R-CNN.

Limitation: is still too slow for real-time use, and the training process is not streamlined.

FPN
2017

Merit: FPN is significantly faster and improved over several competition winners using densely sampled image

pyramids.

Limitation: FPN is computationally expensive due to the use of densely sampled image pyramids.

Mask-R-
CNN 2018

Merit: IT is a refined version of the Faster R-CNN framework that can perform instance segmentation with an

additional branch for mask detection in parallel with the BB prediction branch.

Limitation: Falls short of real-time applications due to its computational complexity.

NAS-FPN
2019

Merit: It exceeds Mask R-CNN with less computation time and achieves 2mAP accuracy in mobile detection,

because of a combination of top-down and bottom-up connections.

Limitation: NAS-FPN is still slow for real-time applications.

DetectoRS
2020

Merit: Makes a significant difference in efficiency and effectiveness by achieving state-of-the-art accuracy for

object identification and instance segmentation.

Limitation: DetectoRS is still unsuitable for real-time detections due to its computational complexity.



Conclusion and Future Work

Conclusion
 Presented a comparative performance analysis of two-stage object detectors
 Evaluated the performance of different detectors on two datasets, MSCOCO and
PASCAL VOC 2012.
 Using the average precision AP0.5 and AP[0.5:95] on both datasets.
 The results showed that DetectoRS outperformed all other two-stage models
 DetectoRS achieved an AP0.5 of 53.30% and an AP[0.5:95] of 71.60% on MSCOCO.
 DetectoRS achieved an AP0.5 of 83.00% and an AP[0.5:95] of 90.30% on PASCAL
VOC 2012. However, it is also more complex.
 Other two-stage object detectors that performed well in the comparison include:
 NAS-FPN, Mask R-CNN, and Cascade R-CNN.
 These models also use various techniques to improve performance, such as region
proposal networks (RPNs), RoIAlign, and focal loss.

Future research should focus:
 Improving the speed of two-stage detectors without sacrificing accuracy
 Developing anchor-free detectors that are as accurate as anchor-based detectors but
more computationally efficient.
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