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Carbon dioxide Capture and Storage (CCS) systems

 the purpose: to reduce greenhouse gas emissions into the atmosphere

CCS systems consist of 3 parts: 
(1) capturing carbon dioxide (CO2) at its source 
(2) transporting CO2 through pipelines to special storage sites
(3) injecting CO2 into wells, when underground storage is used

 transport in the liquid or supercritical phase is to be preferred, to support 
high flow rates

 transport must stay in the that phase, without transitioning to gaseous 
state, to avoid cavitation

precise transport simulation with indication of phase transition is required
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Pipe transport variables

mass density ρ, velocity v, pipe cross section area S
mass flow: m=ρ v S
density of momentum: ρ v, momentum flow: ρ v2 S
density of energy: ρ e, energy flow: ρ e v S
where e is specific energy (per unit mass)
e=u+v2/2+gh with kinetic and gravity terms
u is specific internal energy
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Pipe transport equations

change of 
(mass, 
momentum, 
energy) in 
dx-element

flow of 
(mass, 
momentum, 
energy) 
through 
boundaries

pressure 
contribution
at the 
boundaries
(PS=force, 
PSvdt=work)

can be 
unified to 
specific 
enthalpy 
H

s
=u+P/ρ
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Pipe transport equations

Darcy-
Weisbach 
friction 
term

gravity force
contribution
(g-free fall accel., 
h-height)

heat transfer to soil 
or other environment
(T-temperature, 
D-pipe diameter)

dependence of lam 
on other 
parameters via 
Nikuradse/Hofer 
formula

stationary process considered:  ∂/∂t = 0
proper discretization applied
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Equation of state (EOS) and enthalpy definition

EOS: z=z(T,P,x), with P=ρ RTz/μ as definition of compressibility factor z; 
R - universal gas const, μ - molar mass, x - vector describing fluid 
composition

enthalpy, similarly: H=H(T,P,x)
 there are a lot of empirical approximations to the real fluid EOS and H
we use the most complex ones provided by GERG2008 
thermodynamical module (ISO standard)

Homogeneous Equilibrium Model (HEM): different phases of a fluid are 
homogeneously mixed and have the same speed, pressure, 
temperature and chemical potential

 implemented in our software MYNTS (Multi-phYsics NeTwork Simulator)
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Phase transitions

GERG2008 properly 
computes phase 
transitions

 for pure substances –  
phase transition line 
(transition at const T,P)

 for fluids with impurities 
– phase envelope 
(transition at const T, 
variable P)

95% CO
2
, 3% N

2
, 2% O

2pure CO
2

P, bar

2-phase

liquid

gas

T, K

super-
critical

P, bar

liquid

gas

T, K

super-
critical

P, bar

ρ, kg/m3

T=273.15K

liquid

gas

2-phase

95% CO
2
, 3% N

2
, 2% O

2pure CO
2 ρ, kg/m3

P, bar

liquid

gas

2-phase

T=273.15K

(a) (b)(a)

(c) (d)



© Fraunhofer SCAI

Phase transitions

 frac(T,P,x) – fraction of gaseous 
phase

 frac=0 liquid, frac=1 gas, 
0<frac<1 two-phase

spurious jump in supercritical 
region (where gas and liquid 
states are indistinguishable)

simple algorithm testing for 
phase transition in vicinity of a 
given (T,P,x) 
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Algorithm (proximity-alarm):

given (T0,P0,x,dT,dP,val)
for T in (T0-dT,T0,T0+dT)

for P in (P0-dP,P0,P0+dP)
if frac(T,P,x)!=val return true

return false.
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Numerical experiments

95% CO2 , 3% N2 , 2% O2
single pipe, laid horizontally
 two scenarios: scen1 without phase 
transition, scen2 – with phase 
transition

 result: scen1 converges,
scen2 diverges (cycling)

 the same pattern for other 
scenarios, phase transition leads to 
divergence

 the reason – too sharp change in 
EOS and H at phase transition

pset qset
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Numerical experiments
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Conclusion

numerical simulation of stationary CO2 transport with impurities and 
phase transitions is considered

homogeneous equilibrium model and GERG-2008 thermodynamic module 
are used

 the algorithms solve scenarios of CO2 transport in the liquid or 
supercritical phase and detect the approaching phase transition region

convergence of the algorithms is analyzed in connection with abrupt 
changes of EOS and enthalpy function in the region of phase transitions
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Conclusion

numerical experiments show that the scenarios with CO2 transport in a 
single phase converge

a conservative algorithm for detecting proximity of phase transitions 
gives the solution to the technical problem posed

divergences can occur in scenarios with phase transitions due to the 
abrupt change of thermodynamic parameters

questions about possible suppression of divergences and improved 
detection of phase transitions are the subject of our further work
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