

Engineering IoT-based Software Systems for Forestry: A Case Study

Marko Jäntti (PhD., Docent), University of Eastern Finland, School of Computing Markus Aho, University of Eastern Finland, UEF Business School & Funlus Oy

UEF// University of Eastern Finland

1. Introduction

- The Internet of Things (IoT) is a rapidly growing technology that offers huge possibilities for optimizing processes and increasing productivity in various domains.
- Ensuring the quality of the IoT is a complex challenge for software engineers and requires new development skills as well as coordination of third party service providers.
 Quality

1. Introduction

- Forestry domain actors still operate with traditional non-digital practices
- IoT technology provides numerous opportunities for improvement and ways to improve productivity and increase level of automation.
- Forest machines are intelligent but the support and maintenance of forest machines includes a large number of manual work activities.

Managing

supplies

Recycling waste 14.11.2023 **3**

UEF// University of Eastern Finland

2. Research Methods

Research problem:

How quality aspects should be taken into account while designing and implementing IoT-based software systems for forestry?

3 research questions:

- What types of IoT monitoring needs does a forest machine operator company have?
- How quality attributes are visible in building IoT solutions?
- How IoT monitoring shall support forest operations?

Research data: Empirical

data on two IoT cases conducted in the case organization (Device specs, interviews with IoT providers, work meetings, field visits, data records etc.)_{14.11.2023}

Research method:

Embedded case study Engineering IoT systems for forestry

Figure: The research settings of the study

UEF// University of Eastern Finland

4

UEF// University of Eastern Finland

Figure: The context of the case study

Case

com-

3. Results

- Case study results are presented by using Situation, Task, Action, Results (STAR) approach.
- The STAR approach includes four steps:
 - 1. **Situation** describing the **context** within the IoT development was performed,
 - 2. Tasks describing **responsibilities or tasks** to be done in that particular situation,
 - 3. Action describing how the task was completed or how the challenge was resolved, and
 - 4. **Results** describing the **outcomes** or **results** generated by the **action**.

UEF// University of Eastern Finland

3.1. Case A: IoT-based liquid level monitoring

- Situation: the company lacks an accurate view of their forestry liquid inventories -> drivers of forest machines do not receive required.
- Task: The EU funding from DIH World enabled the research consortium to design, implement, test and validate the monitoring solution. The company can order refilling of containers proactively.
- Action: LoraWAN sensor modules installed into IBC containers, a mobile app development "digital twin"_
- Results: IoT-based monitoring system that enables monitoring liquids (Adblue, marking dye) in remote storage areas.
 UEF// University of Eastern Finland

3.2. Case B: IoT-based weight monitoring

- Situation: Need to monitor & measure mass of forestry supplies such as oil canisters (identified in the end of Case A)
- Task: The main task was to design a continuous mass measurement system using smart sensors and AWS cloud services-> An industrial class "scale" under the monitoring target
- Action: Monitoring target was changed to the oil canister pallet, PCE RS 2000 scale purchased, meetings with Amazon, the system provider was selected after Solver X pitching event
- Results: the system architecture established, services selected, the prototype 80 % completed UEF// University of Eastern Finland

Figure: PCE RS 2000 scale

14.11.2023 **8**

4. Ánalysis of results

Category	Case A	Case B
Monitoring needs	-Monitoring liquid containers -Proactive orders for liquids -Sending alerts on low levels -Ordering refilling containers in time	-Continuous mass monitoring -Proactive orders for supplies: oil canisters -Sending alerts on low levels -Oil orders in time
Quality	-Accurate view on liquid level -Data conversion on distance to percent -Data frequency 6 hours -Install sensor to cap of container -Calibration of sensors	-Number of oil canisters -4-20 mA to kg -Data frequency 1 hours -Scale under pallet -Calibration of scale
Benefits	-Check liquid levels remotely -Setting alerts on critical liquid levels -Proactive way to ensure availab. of liquids -Provides data on liquid consumption trends -May reveal container leaks	-Number of oil canisters -Setting alerts on only few oil canisters left -Enables monitoring any tangible items -Consumption of oil canisters -May detect that items are stolen
UEF // University of Eastern Finland		14.11.2023 9

UEF// University of Eastern Finianu

5. Conclusion

- 1. What types of IoT monitoring needs does a forest machine operator company have?
 - Various types and sizes of containers (fuel & water & oil & fungicide & diesel exhaust fluid & marking dye containers)
 - Various types of tangible supplies such as grease tubes, oil filters, oil canister pallets, chain blades and chains (mass monitoring needed)
- 2. How quality attributes are visible in building IoT solutions?
 - Devices and network: Selecting right sensor and data network solution
 - Data: Performing data conversion, defining data storage mechanism for IoT data
 - Calibration & installation: installing the sensors correctly, calibration of scales and sensors is very important to ensure quality of measurements
- 3. How IoT monitoring shall support forest operations?

Proactive ordering, alerts on low inventory levels, reduced traveling to remote sites...
UEF// University of Eastern Finland
14.11.2023 10