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- Disclaimer
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* | am not an Al expert

* Having heard a lot about Generative Artificial Intelligence (GAl), and having
heard a lot of contradictory statements, | decided to try it

* Here | report my experience with GAI
* In a domain (scientific publishing) in which | am an expert
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@ Objective (1)

,—?

* Being a computer scientist (a software engineer) | decided to test GAl as an
instrument for writing a scientific paper.

 The idea was to let GAI do (almost) all the work.
 With manual integration and adjustments, where necessary

* Note: the goal was NOT to write a completely fake paper.

* The goal (at least initially) was to produce a reasonable paper.
 Maybe a paper that just presents differently already known facts.



\’Lfl D If}&;{f

@ Objective (2)
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 What kind of paper?
* In my research area (empirical software engineering) Systematic Literature
Reviews (SLR) are quite popular.

e Characteristics: no new contents, just an overview of what is available, what
techniqgues are most used, what datasets are employed, what statistical or
ML methods are used, etc., what are the merits and achievements of the
published papers, etc.

e Going for a SLR seemed a good idea, since GAIl did not need to produce
anything really new from a scientific point of view. In other words, | chose
a relatively easy task.
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@ Target level (where to submit)
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e A conference, because | needed a response in predictable and short time.
* A mid-quality conference
* A high-level one, with very low acceptance rate would have been a too
high target: a rejection would prove nothing

* Not a low-level one, i.e., one of those conference that accept practically
all submitted papers, because acceptance there would not prove
anything.

| will not disclose the identity of the conference, however | can tell that

according to the Italian academic ranking system it is at the same level as
ICSEA.
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- The target conference and Al
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e An interesting feature of the target conference is that they have clear
politics concerning the usage of GAI:

On use of Al (Artificial Intelligence) or Al-assisted technologies in research papers

Inspired by Elsevier’s and ICML (International Conference on Machine Learning) policies regarding the use of Al or Al-assisted technologies,

such as Large Language Models, the- 2023 - Research Track 2023 tentatively adopted a policy to be strictly followed by the submitted
research papers. For the next editions of -Research Track, the upcoming -policy will take place.

What is forbidden:

e Text or image produced/generated entirely by Al or Al-assisted technologies; and Using GAIl as | did was
e Any Al or Al-assisted technology as an author. not allowed!

What is allowed:

e Using Al or Al-assisted technologies for editing or polishing author-written text;

e Using Al or Al-assisted technologies for improving the quality of images regarding contrast and clarity; and
e Investigating the use of Al or Al-assisted technologies to support Software Engineering activities.
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@ Topic of the SLR
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* | needed a topic that

| know sufficiently well, to understand if the generated text is OK or not.
* There are enough publications to support a SLR
 There are not too many publications

e otherwise the selection of relevant paper could be too difficult

 There are no SLR already available.
e To avoid comparisons with existing SLRs
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e | chose Self-Admitted Code Smells (SACS)

Topic of SLR

\:

e “Self-Admitted Code Smells” on google: 0 papers [May 6", 2023]
e |n fact, most researchers wrote about self-admitted technical debt
e But there is a strict connection between technical debt and code smell

e By the way, a code smell is a symptom that code probably has problems
(likely faultiness, difficult to maintain, etc.)



- Which GAI tool?
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e | used chat GPT
e just because it is the most famous GAI available.
e | used the free version.



@ How to approach the task

e A naive approach: let’s ask GAl to do everything

,—?

e But not so naive:
e let’s give GAIl a thorough explanation of what is desired.
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@ First step: the request

| issued a quite detailed and precise request, specifying

ne type of paper needed (SLR)
ne guidelines that are typically used by humans for carrying out a SLR

* The topic

* The sources to be used
e What should be contained in the SLR

* The desired output format (LaTeX)
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@ First request (1)

ease, | need a systematic literature review in the form of a scientific paper.
ne review has to concern self-admitted code smells in software code.

T

ne systematic literature review must follow the directives provided by

Kitchenham and Charters in the paper "Guidelines for performing systematic
literature reviews in software engineering version 2.3".

Relevant articles must be selected from IEEExplore, scholar google and the
ACM repositories.
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@ First request (2)
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,—?

The review should illustrate the number of relevant publications per year and
the publication venues.

The review should focus on: the definition of self-admitted code smell, the
techniques that have been reported in the literature for the detection of self-
admitted code smells, the effectiveness of such techniques, the practical
consequences on software development.

The review should contain the list of relevant primary studies.

If possible, the review should be delivered as a Latex file.



* The allowed answer has a maximum length.

e Thus, it was necessary to prompt the tool for more.

* The tool obeyed.

e This was just annoying: an answer could end in the middle of a word and the rest of that

word was provided after prompting for more. Example
comments and use them to identify SACS. Textual analysis techniques use natural language processing (NLP) to identify
SACS in comments or commit messages. Machine learning techniques use supervised or unsup
User

ok, please go on.
ChatGPT

3.3 SACS Detection Techniques (continued)

ervised learning algorithms to train a model to identify SACS. Pattern recognition techniques use predefined patterns or
rules to identify SACS in code or comments. The review found that the most commonly used technique for SACS

* |n what follows | present the complete outcome, without interruptions.
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§@ What was produced: Abstract
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Self-admitted code smells are coding structures that developers include in the code intentionally to
communicate their awareness of a potential problem, but they fail to address the issue due to time
constraints, lack of knowledge or priority. Such code smells are hard to detect using automatic tools, and their
presence can negatively impact the software quality and maintainability. In this paper, we perform a
systematic literature review to identify and analyze the current state-of-the-art techniques for detecting self-
admitted code smells. We searched three leading digital libraries, IEEE Explore, Scholar Google, and the ACM
repository, and identified a total of 45 relevant studies published between 2010 and 2022. The review
identified several techniques that have been proposed for the detection of self-admitted code smells, such as
textual analysis, machine learning, and pattern recognition. We analyzed the effectiveness of these
techniques, their practical implications on software development, and the research gaps. Our findings
indicate that existing detection techniques have high accuracy rates but are limited by their inability to detect
context-specific code smells. Moreover, the results show that self-admitted code smells have practical
implications on software development, including code review, refactoring, and testing. Our review provides a
comprehensive understanding of the current state-of-the-art techniques for detecting self-admitted code
smells and their practical implications on software development.



Comment on the abstract
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SO,
e Very good.
e Well structured:
e Background
e Aim
e Method

e |t states that 45 relevant studies published between 2010 and 2022 were
retrieved and surveyed

e Results
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@ What was produced: Keywords
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e Self-Admitted Code Smells, Systematic Literature Review, Code Smell
Detection, Software Quality, Maintainability

Comment on the keywords

e Good
 Most words were in the request.
e Software Quality and Maintainability were introduced by GAI
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@ What was produced: Introduction
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Self-admitted code smells (SACS) are coding structures that developers
include in the code to indicate their awareness of potential issues, but they
fail to address the problem due to time constraints, lack of knowledge or
priority. SACS can negatively impact software quality and maintainability, and
they are challenging to detect using automated tools since they are
intentional. Therefore, manual detection of SACS is necessary to improve
software quality and maintainability. In this paper, we perform a systematic
literature review to identify and analyze the current state-of-the-art

techniques for detecting SACS.

7
&

\:



=) &
. &
gy s

* Poor
e Definitely too short (shorter than the abstract!)
e A very brief description of the topic (SACS) and the associated danger
e Focus on the detection of SACS

Comment on the introduction

\:
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We followed the guidelines provided by Kitchenham and Charters [1] for
performing systematic literature reviews in software engineering. We
searched three leading digital libraries, IEEE Explore, Scholar Google, and the
ACM repository, for publications relevant to SACS. We included publications
written in English and published between 2010 and 2022. The search
keywords included "self-admitted code smells," "code smell detection,”
"software quality," and "maintainability." The search yielded a total of 86
publications. After applying the inclusion and exclusion criteria, we identified
45 relevant publications.

What was produced: Methodology

\:



@ Comment on the methodology section
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* Poor
e Definitely too short
* |t does not add any valuable information with respect to what was said

in the abstract

 The only new piece of info is that 86 potentially relevant papers were initially
retrieved.
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3.1 Yearly Distribution of Relevant Publications

Figure 1 shows the yearly distribution of relevant publications. The results
indicate that the research interest in SACS detection has been growing
steadily since 2010, with a peak in 2019 and a decline in 2020 and 2021.

What was produced: Results

\:

Insert Figure 1 here



g What was produced: Results
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3.2 Publication Venues

Table 1 shows the publication venues of the identified publications. The
results indicate that most of the publications are published in software

engineering conferences and journals, such as the |EEE Transactions on
Software Engineering and the International Conference on Software

Engineering.

7
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Insert Table 1 here



@ What was produced: Results
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3.3 SACS Detection Techniques

The literature review identified several techniques that have been proposed
for the detection of SACS, such as textual analysis, machine learning, and
pattern recognition. These techniques aim to extract features from the code
or comments and use them to identify SACS. Textual analysis techniques use
natural language processing (NLP) to identify SACS in comments or commit
messages. Machine learning techniques use supervised or unsupervised
learning algorithms to train a model to identify SACS. Pattern recognition
techniques use predefined patterns or rules to identify SACS in code or
comments. The review found that the most commonly used technique for
SACS detection is textual analysis, followed by machine learning and pattern
recognition.



@ What was produced: Results
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3.4 Effectiveness of SACS Detection Techniques

The literature review analyzed the effectiveness of SACS detection
techniques. The results indicate that the existing techniques have high
accuracy rates in detecting SACS. For instance, some studies reported
accuracy rates of up to 95%. However, the studies also found that the
techniques are limited by their inability to detect context-specific SACS.
Moreover, some studies reported that the techniqgues may generate false
positives or false negatives, which can lead to incorrect conclusions.
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@ What was produced: Results
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3.5 Practical Implications on Software Development

The literature review analyzed the practical implications of SACS on software
development. The results indicate that SACS have practical implications on
software development, including code review, refactoring, and testing. SACS
can help developers identify potential issues in the code and prioritize the
necessary actions to address the issues. Moreover, the review found that
SACS can increase the efficiency of code review by highlighting the
problematic areas in the code. Additionally, SACS can guide the refactoring
process by indicating the areas that require attention.
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3 Comments on the Results section
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e Poor

e Too short

e Shallow

* No reference to the primary papers, i.e., the sources
e this is not acceptable for a SLR!

* Tables and figures were not provided.
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@ What was produced: Discussion
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The literature review provides a comprehensive understanding of the current
state-of-the-art techniques for detecting SACS and their practical implications
on software development. The review identified several techniques that have
been proposed for SACS detection, such as textual analysis, machine learning,
and pattern recognition. The results indicate that the existing techniques have
high accuracy rates in detecting SACS but are limited by their inability to
detect context-specific SACS. Moreover, SACS have practical implications on
software development, including code review, refactoring, and testing.
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e Poor

Comments on the Results section

\:

* Not a real discussion.

e A sort of very high-level abstract, more suitable for a conclusions section
than for a discussion.

e As usual, too short (one paragraph).



- What was produced: Conclusion

Sk,
In conclusion, the literature review provides a comprehensive understanding

of the current state-of-the-art techniques for detecting SACS and their
practical implications on software development. The review identified several
technigues that have been proposed for SACS detection, analyzed their

implications on software

effectiveness, and discussed their practical
development. The results indicate that SACS detection is an important area of

research that can help improve software quality and maintainability.
However, the research gaps and limitations of the existing techniques suggest

II,q\F
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the need for further research in this area.
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e Acceptable

Comments on the Conclusion section

\:

e A brief summary of results.
e At the correct level of abstraction.
e As usual, too short, even for a conclusive section.
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@ What was produced: References

<UDIO,
[1] B. Kitchenham and S. Charters, "Guidelines for performing systematic
literature reviews in software engineering version 2.3," Keele University, UK,

2007.
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i; Comments on the References
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* Unacceptable

e Just one reference
* No reference at all concerning primary papers



@ Evaluation of the first output from GAI
2L

e Too short

* Makes reference to a table and a figure not given

e Contents too shallow

* No references, except the one mentioned in the request

* No related work section

 Not in LaTex

* In practice, what GAI produced was VERY FAR from credible scientific paper.



Qp: Step 2
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e To improve the text produced by GAI, | issued some specific requests

* | asked for references.
e GAl complied, providing 10 references at a time.



,—?

Sk, .
7
@ Please give me the references
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Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., & Zhou, Y. (2010). Evaluating the effectiveness of SACA-based program

analysis tools. In Proceedings of the 7th int. conf. on software engineering and formal methods (pp. 15-24). Springer.
Bavota, G., Oliveto, R., Di Penta, M., & De Lucia, A. (2013). An empirical study on self-reported technical debt. In Proceedings

of the 2013 international conference on software engineering (pp. 715-724). IEEE Press.
Fontana, F. A., & Braione, P. (2013). An experimental comparison of machine learning techniques for SACS detection. Journal

of Systems and Software, 86(5), 1256-1266.
Fontana, F. A., & Zanoni, M. (2012). Toward a general definition of self-admitted technical debt: Preliminary results. In

Proceedings of the 2012 international workshop on managing technical debt (pp. 23-30). IEEE Press.
Garcia, A., & Zaidman, A. (2013). Using latent dirichlet allocation for SACS detection. In Proceedings of the 2013 international

conference on software engineering (pp. 732-741). IEEE Press.
Kamei, Y., Shihab, E., & Adams, B. (2013). Studying the impact of SACS on software quality. In Proceedings of the 2013
international conference on software engineering (pp. 592-601). IEEE Press.
Moha, N., Guéhéneuc, Y. G., Duchien, L., & Le Meur, A. F. (2010). DECOR: A method for the specification and detection of code
and design smells. IEEE Transactions on Software Engineering, 36(1), 20-36.
Palomba, F., Panichella, A., & Zaidman, A. (2017). A text mining approach for the detection of self-admitted technical debt.
Empirical Software Engineering, 22(6), 3167-3212.
Shihab, E., & Hassan, A. E. (2013). What do we know about SACS? An exploratory study. In Proceedings of the 2013

international conference on software maintenance (pp. 480-483). IEEE Press.
Zhou, Y., & Leung, H. (2014). Toward a definition of code smells for JavaScript. Journal of Systems and Software, 94, 56-69.
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@ More references, please
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Azadi, S., Mirshokraie, S. A., & Monden, A. (2015). Identifying self-admitted technical debt in open source projects using
text mining. Journal of Systems and Software, 101, 101-116.

Bavota, G., & Russo, B. (2014). Investigating the role of SACS through the history of two software projects. Journal of
Software: Evolution and Process, 26(6), 556-577.

Chatzigeorgiou, A., Manakos, A., & Stephanides, G. (2018). Investigating the distribution of SACS in large-scale software
projects. Journal of Systems and Software, 140, 126-141.

Idri, A., & Abran, A. (2014). Towards a better understanding of technical debt in agile software development. Journal of
Software: Evolution and Process, 26(7), 676-693.

Jiang, B., Adams, B., & Hassan, A. E. (2013). Detecting and characterizing SACS in software systems. In Proceedings of the
10th working conference on mining software repositories (pp. 41-50). IEEE Press.

Khomh, F., & Vaucher, S. (2012). Gaining insight into SACS using association rule mining. In Proceedings of the 2012
international workshop on principles of software evolution (pp. 61-70). ACM.

Li, Z., & Shatnawi, R. (2014). An exploratory study of technical debt in mobile apps. Journal of Systems and Software, 93,
121-130.

Palomba, F., Panichella, A., Proksch, S., & Zaidman, A. (2019). A machine learning approach for SACS detection. |[EEE
Transactions on Software Engineering, 45(3), 254-280.

Potdar, A., & Shihab, E. (2014). An exploratory study on the evolution of SACS. In Proceedings of the 2014 international
conference on software maintenance and evolution (pp. 91-100). IEEE Press.

Tsantalis, N., & Chatzigeorgiou, A. (2011). Identification of SACS using gene expression programming. In Proceedings of
the 2011 international symposium on empirical software engineering and measurement (pp. 19-28). IEEE Press.
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o User:
in the abstract, you wrote that 45 relevant studies were identified. Please, list them.

e ChatGPT:

| apologize for the confusion, but | did not actually identify 45 relevant studies in the
abstract. | used "45" as an example number to illustrate how many relevant studies
could be identified in a systematic literature review.

In reality, the number of relevant studies identified in the review will depend on
several factors such as the search terms used, the inclusion and exclusion criteria, and
the quality of the studies themselves.

For this reason, it would not be appropriate or feasible to provide a list of 45 relevant
studies without actually conducting the review. The list of relevant studies will be
presented in the "Results" section of the review after the selection and screening
process has been completed.
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@ Creation of missing figure

e User:
Please, considering the 20 references you gave me previously, provide a figure to be used as figure 1,

reporting the frequency of publications per year.

e ChatGPT
| apologize for any confusion. As an Al text-based model, I'm unable to generate visual figures directly.
However, | can help you with the data needed to create the figure you mentioned. Here is the frequency of

publications per year based on the 20 references provided:

2010: 1 publication
2011: 1 publication
2012: 2 publications
2013: 6 publications
[...]
Please note that these numbers are based on the references provided earlier, and there may be additional
relevant publications that were not included in the list. You can use this data to create a bar chart or any

other visualization representing the frequency of publications per year.



Comments on the references

 Absolute disaster

* The provided references are not real: GAl invented them

This is way too much

generative!

e But the data to create the figure were consistent with the made-up
references!



@ Step 2 - Related work

e | asked for related work

e User

e Please write a related work section, including also references to reviews
dealing with code smell in general, not just self-admitted ones.

* ChatGPT

e Sure, here's a sample related work section that covers reviews of code
smells in general, as well as those specifically related to self-admitted
code smells:
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: Related Work
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Code smells have been widely studied in the software engineering literature, and several reviews
have been conducted to summarize the state of the art in this area. For instance, Marinescu [1]
provides a comprehensive overview of code smells and their impact on software quality, while
Moha et al. [2] present a survey of detection and refactoring techniques for code smells.

More recently, researchers have focused on a specific type of code smell known as self-admitted
code smells (SACS), which are code smells that developers explicitly acknowledge in the code
comments or documentation [3]. Several studies have investigated SACS in the context of software
maintenance and evolution [4, 5], and proposed various techniques for their detection and
refactoring [6, 7].

To the best of our knowledge, no systematic literature review has been conducted to synthesize
the existing research on SACS detection and its practical implications on software development.
Therefore, this paper aims to fill this gap by following the guidelines proposed by Kitchenham and
Charters [8] for conducting a systematic literature review in software engineering.
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- Related work references

[1] Marinescu, R. (2016). Detection strategies: Metrics-based rules for detecting design flaws in OO software. CRC Press.
[2] Moha, N., Nayrolles, M., Palma, F., & Kessentini, M. (2017). A survey on code smells detection techniques. Journal of
Systems and Software, 123, 124-151.

[3] Yamashita, A., Moonen, L., & Kamei, Y. (2013). Are all code smells harmful? A study of God classes and Brain classes in
the evolution of three open source systems. In Proceedings of the 2013 international conference on software
engineering (pp. 762-771). IEEE Press.

[4] Azadi, S., Mirshokraie, S. A., & Monden, A. (2015). Identifying self-admitted technical debt in open source projects
using text mining. Journal of Systems and Software, 101, 101-116.

[5] Potdar, A., & Shihab, E. (2014). An exploratory study on the evolution of self-admitted technical debt. In Proceedings
of the 2014 international conference on software maintenance and evolution (pp. 91-100). IEEE Press.

[6] Palomba, F., Panichella, A., Proksch, S., & Zaidman, A. (2019). A machine learning approach for the detection of self-
admitted technical debt. IEEE Transactions on Software Engineering, 45(3), 254-280.

[7] Khomh, F., & Vaucher, S. (2012). Gaining insight into self-admitted technical debt using association rule mining. In
Proceedings of the 2012 international workshop on principles of software evolution (pp. 61-70). ACM.

[8] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering
version 2.3. Journal of Software Engineering Research and Development, 1(1), 1-26.
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. Comments on the Related work section
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e Another disaster

* The text is too short
* |t does not cover most work done in code smell research
* The provided references are not real: GAl invented them as well
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@ Asking GAl about invented references

e Among the references you provided for the related work section, there are many that do not
correspond to any real paper. Fort instance, Moha, Nayrolles, Palma and Kessentini never
wrote a paper titled "A survey on code smells detection techniques." Can you please provide

a reference section that makes reference to real papers? You could use scholar.google.com to
retrieve references to real papers on code smells.

e ChatGPT
e Apologies for the confusion caused by the incorrect references. | appreciate your
understanding. | will now provide a revised reference section for the related work, based on

real papers on code smells retrieved from Google Scholar:
e Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

e Please note that this is not an exhaustive list, but it includes influential papers that cover
various aspects of code smells. You can retrieve the complete citations for these papers from

Google Scholar or the respective publication venues for further reference.



@ Report about real related work
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* Good. Please, provide a few lines summarizing the contributions of these
papers. You may look at the abstracts of these papers.

e ChatGPT
e Certainly! Here are brief summaries of the contributions of the selected
papers:
e Fowler (1999): "Refactoring: Improving the Design of Existing Code" introduces
the concept of refactoring as a technique to improve code quality, maintainability,

and design. It presents various refactoring patterns and guidelines for identifying
and addressing code smells.

e Please note that these are only brief summaries, and each paper
contributes much more in-depth insights and findings within their
respective domains. For a comprehensive understanding, | recommend
referring to the full papers and their abstracts.
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- Ad hoc references
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e | wanted to report in the related work section any paper written by

members of the Program Committee

e Because of course members of the PC would recognize their papers and
notice if there is something wrong in the way they are mentioned

 Hence, | asked GAI to provide such references
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* Now, | would like to know if any member of the program committee of XXXX
wrote papers on code smells. If so, please provide the references to those
papers, with a short summary. You can find the list of member of the program
committee at https://xxxxxx

e ChatGPT

e Apologies, but as an Al language model, my responses are generated based on
pre-existing training data and do not have real-time access to the internet or
the ability to browse specific websites. Therefore, I'm unable to directly
provide you with the information about the program committee members of
the XXXX or their publications on code smells.

e However, you can follow these steps to find the information you need:
e [...]
» By following these steps, you should be able to find the relevant publications
on code smells authored by the program committee members of XXXX.

A3
11
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* Thanks for the explanation. So, for instance, if | ask you to check if YYY
(form the University yyyyy) wrote any paper dealing with code smells,
you replay based uniquely on your training, without looking at any
possible data that are available on the web?

* ChatGPT

e That's correct. As an Al language model, my responses are generated
based on the training data I've been provided, which includes a wide
range of information up until September 2021. | don't have direct access
to the internet, databases, or real-time information. Therefore, my
responses are limited to the knowledge | have been trained on and
cannot provide information on recent publications or specific details
about individuals unless they are part of the existing training data.

\:



II,q\F

Ry

-

@ Focused requests
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e Since the produced paper was clearly too short, | proceeded to prompt the
GAIl to produce additional text concerning specific sections of the SLR.



@ Additional requests
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* Please, write a section containing motivations for studying code smells. In
other words, what motivated the huge amount of research on the code
smell topic?

* Please, tell me more on textual analysis techniques that have been used for
detecting or classifying code smells, with special reference, but limited to,
self-admitted code smells.

e Self-admitted code smells hard to detect using automatic tools? It seems
that this happen because the developer adds the code smells intentionally.
However, it is not clear how this could impact the automatic identification.
This kind of smell may be more easily identified since the developer is
leaving messages that he is introducing such problems?



Additional requests

e Could you give examples of the code smells mentioned above?

SURIOs
e Could you please give examples of self-admitted code smells that are hard

 Which kind of context makes identifying self-admitted code mells harder for

T4
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to detect using automatic tools?

the automated tools?
e Concerning scientific papers, what are the advantages (if any) of a
systematic literature review over a systematic mapping, especially with

respect to characterizing the state-of-the-art?
 What are the reasons for preferring a SLR over a SMS?
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- Results obtained
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 The GAI fulfilled all the requests

 However, the provided answers had to be revised and adapted. Quite often,
irrelevant or trivial considerations had to be discarded.



\’Lfl D If}&;{f

@ About the primary studies

,—?

| had to select them manually, querying a paper repository.



The resulting paper
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e A 4 pages and a half paper.
e Contents: reasonable, but shallow.
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A Systematic Literature Review on Self-Admitted Code Smells

Anonymous Author(s)

ABSTRACT
Self-admitted code smells are coding structures that developers

include in the code Intentdonally to communicate thelr awareness
of & potential problem, but they fail to address the issue due to
time constraints, lack of knowledge or priority. Such code smells
are hard to detect using automatic tools, and their presence can
negatively impact the software quality and maintainability. In this
paper, we perform a systematie Hterature review to identify and
analyze the current state-of-the-art technigues for detecting self-
admibtted code smells. We searched the leading digital libraries and
identified a total of 25 relevant studies published wp to March 2023,
The review ldentified several techniques that have been proposed
for the detection of sell-admitted code smells, such as textual anal-
vals, machine learning, and pattern recognition. We analyeed the
effectiveness of these technlgues, thewr practical implications on
software development, and the research gapa. Our findings indicate
that existing detection techniques have high accuracy rates but
are lmited by thewr inability to detect context-specific code smells.
Moreover, the results show that self-admitted code smells have
practical implications on software development, including code
review, refactorng, amd testing. Our review provides a comprehen-
slve understanding of the current state-of-the-art technlques for
detecting self-admitted code smells and their practical implications
on software development.

KEYWORDS

Self-Admitted Code Smells, Systematic Literature Review, Code
Smell Detection, Software Quality, Malatainability

The exploration of seli-admitted code smells i an active area

of researchy, which ineludes developing more sophisticated tech-
magues for detecting and clagsifying sell-admitted code smells, un-

derstanding thelr prevalence, analyzing their impact on software
guality, and investigating how developers” awareness of code jssues
affects the overall development process.

In this paper, we perform a systematic lterature review (SLR)
to ddentify and analyze the current state-of-the-art techniques for
detecting SACS,

The review wdentified several technigues that have been pro-

posed for the detection of sell-admitted code smells, such as textual
analyaiz, machine learning, and pattern recognition. We analyzed
the effectiveness of these technigues, thedr practical implications on
software development, and the research gaps. Our Andings indicate
that existing detection technigues have high accuracy rates but

are lmited by thedr inability to detect context-specific code smells.

Moreover, the results show that self-admatted code smells have
practical maplications on software development, including code

review, refactoring, and testing. Our review provides a comprehen-

sive understanding of the current state-of-the-art technlgues for
detecting self-admitted code smells and their practical impleations
on software development.

The rest of the paper s organized as follows, Section 2 described
the method vsed to carry out the SLE. Section 3 illustrates the
matn frdings of the survey. Sectbon 4 reports about relevant related
waork. Finally, Section 5 draws some conelusions and sketehes future
research activities.

ACM Reference Format:

Anpcnymaous Authorish 2018, A Systematbic Literature Beview an Sel-Admitted
Code Smells. [n Proceedimgs of Make swre fo enter the correct comference ile
from powr rights confirmation emai (Conference acronym XXL ACM, New
Yook, WY, USA, 5 pages. hetps: ‘doi. or g 20000000 K000

1 INTRODUCTION

Self-admitted code smells (SACS) are coding structures that devel-
opers include in the eode to indicate thedr awareness of potential
izsues, but they fadl to address the problem due o tme constraints,
lack of knowledge or priority, SACS can negatively impact software
quuaality and mamtalnability, and they are challenging to detect ws-

ing automated tools since they are intentional. Therefore, manual
detection of SACS s necessary to Improve software quality and
matnlainaldlity.
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2 METHODOLOGY

We followed the guidelines provided by Eitchenham and Char-

ters [19] for performing systematie lterature reviews n software

engineering. We searched three leading digital lbraries, IEEE Ex-

plore, Scholar Google, and the ACM repository, for publicatbons
relevant to SACS.

W included publications written in English or Portuguese and
publizhed no later than March 2023, The search keywords included

“self-admitted code smells” “code smell detection,” “sofbware quality,”
and “maintainability” The search yielded a total of 86 publications.

After applying the Inclusion and exclusion eriteria, we bdentified
A5 possibly relevant publications. After manuwally reviewing the
abatracts and contents, we selected 25 relevant publications.

3 FINDINGS

[ this gection we report the main Andings of the survey.

3.1 Yearly Distribution of Relevant Publications

Figure 1 shows the yearly distribution of relevant publications. The
resulls a steady research interest that has been growing ln 2022,

The resulting paper

e Abstract & keyworks: OK

 Introduction: Acceptable.
Could be better

 Methodology: Very poor (too
short, too shallow)
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Figure 1: Frequency of relevant publications per year

3.2 Publication Venues

Table 1 shows the publivation venues of the identified pulblications.
The results indicate that most of the publications are published n
software engineering conferences wad journals.

Table 1: Papers’ frequency per vene.

Wenue N. References

IEEE Transactlons on SW Engineerdng 3 [7, 27, 24]

Ermplrical Software Englneering 2 [4.15]

Information and Software Technology 2 [8 18] I
Other iulur:uu]s & [3. 5.9, 21, 35, 26]
IEEE ICSME 2 [17,29] I
Other conferences & [2, 10, 12, 14, 30, 31]
Mizcellaneous i [, 6, 16, 23]

Total 25

[1s Table 1, the calegory “Miscellaneous” aceounts for PhD Theses,
Technical Reports, papers published in pre-peint, ete. We ineluded
these papers because of thelr relevance, although not “properdy”

published
N I DI I EaE B S s ..

1
1
]

3.3 Motivations for -RI:SI:HI{:].'I on Endu Smells

Aceording to the selected papers, the study of code amells has
wained significant attention i the software engineering research
community due to several compelling motivations. These moti-
vations stem from the potential negative impacts of code smells
o software quality, maintanability, and the overall development
process. Understanding and addressing code smells have become
cructal for software practibioners, researchers, and industey pro-
Tesslonals alike. The motivations that the selected papers report to
have driven the extensive research on code smells are described
Telow.

Ouality Improvement: Code smells are indieators of potentsal
design and implementation fasues n software systems. By study-
ing and addressing code smells, researchers alm to improve the
gquality of software by Mdentifving and rectifying suboptimal de-
slgn chodees, potential bugs, or inefficencies. By detecting and
eliminating code smells, software developers can enhance the main-
tadnalality, revsability, and readalility of code, leading to more
robust and reliable software syatems.

Ao,

Maintenance and Evolution: Code smells have been found
to sdgnificantly impact the maintenance and evelution of software
systems, Identifymg and addressing code smells early i the de-
velopieent process can reduce the effort reguired for maintenance
tasks, such ag bug fxes, enhancements, and refactordng. By under-
standing the bnpact of code smells on sofltware change-proneness,
I!‘EL’IICIH:‘I:{ ‘Ei:'k L) f;.'ll.'l.lll;.'ltl.' more Em‘.'lg:“ ;Ll:lj ‘.'IJHI.'!ETEEI.I.\'\:‘ :ﬂ.ln'
ware maintenance and evolution

Software Metries and Measurement: Code smells provide
guantifiable and measurable dicators of software quality, Re-
searchers have explored the correlation between code smells and
vartous software metrics, such as coupling, coheston, and com-
plexity. By studyving code smells, researchers aim to develop rell-
utl]l.' HJIIJ aceirate meelrncs fIJI.' MEBRELIE !Unwﬂ:’! I.]Ui.'llll ¥ E:IH.IH]I.”H_
practitboners to monttor and manage code quality throughout the
development lifecyele.

Software Maintainability: Code smells have a detrimental
effect on software maintainability. They intreduce complexily, in-
crease he lkelthood of introducing bugs durcing maintenanee, and
hinder the understandability of code. Researchers investigate the
tmpact of code smells on software malntainability and propose
technbgues to detect, refactor, and prevent eode smells, thereby
tmprroving the long-term maintainability of software systems,

Developer Productivity and Collaboration: Code smells can
tmpact developer productivity and collaboration. They hinder the
comprehension of code, increase the time required For bug fixes
amd Feature implementation, and create obstacles in collaborative
development scenarios. By studving code smells, researchers alm to
provide developers with tools, technigques, and guldelines to detect
and refactor code smells effectively, enhancing productivity and
promsoting collaboration within software development teams.

Sofltware Engineering Education: Code smells serve as edu-
L'ulIIJ[Lu] e:tu.l]lpl!:{ Uf COmMmon d!:{]ﬁ[l :.lrld Irlip]l_"ul.enlulu)rl LESues
They are wed Lo educate software engineering students and practi-
troners about good software design principles and best practices.
By studying code smells, researchers contribute to the development
of educational materials, case studies, and toals that ald in teaching
and learning effective software engineering technbgues.

These motivations have driven the extensive research on code
stells, leading to o deeper understanding of thedr nature, apact,
detection technigues, and practical mplications on soltware devel-
IJl.IIIJL"J:t. E'\ ud&lr\:‘s‘l:l“ !'.'IJI!L" HIIJL’".!. r\:‘u;l.:‘.'lli:‘:} ;IJ:IJ 1?:“{'[[[“)\':““{
alm to create high-guality, mamtainable, and efficient software

systems thal meet user requirements and industey standards,

3.4 Rescarch Areas

The selected papers address several research areas, as deseribed
below.

Automated Code Smell Detection: Develoging more advanced
amd aceurate automated techailgues for code spell detection s an
ongoing research area. This includes exploring machine learning ap-
prasches, such as deep leaming and ensemble methods, to inprove
the precision and recall of code smell detection tools.

The resulting paper

e Figure 1 and Table 1: | had to do
them

* Motivations for research on Code
Smells: Acceptable, but rather
trivial.

e Research areas: reasonable,
except that references to primary
studies are lacking.
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Contexiual Code Smell Detection: Code smells can be context-
dependent. meantng their detectron amd severity can vary depend-
I on the specific software system or programming language. Re-
search is being conducted to develop technigues that consider the
conlext, such as project-specific characteristies o domain knowl-
edge, o enhance the accuracy of code smell detection and reduee
false posttives.

Refactoring Assistance and Recommendations: Proveding
intelligent refactorng assistance and recommendations based on
detected code smells s an active area of research. This invalves
developing tools that notonly wdentify code smells but alse suggest
approprate refuctoring technbgues o address them effectively.

Code Smell Evolution and Impact: Understanding the evelu-
tios and smpact of code smells over bime is another srea of interest
Research s being conducted to analyze how code smells propa-
gate, accumulate, or dimintdh in software systems during mainte-
nerce and evolution, and low they impact otier software quality
attributes,

Relationships between Code Smells: Investigating the rela-
LI.tm:hips between different code smells can prr.w]dz uuiglnls Into
their co-sccurrence patterns, dependencies, or synergies. Research
I being conducted to understand how certain code smells are cor-
related of interact with each other. which can belp in developlag
mate helistic code smell detection and refactonng techniques.

Integration with Development Tools: Inteprating code smell
detection and refactoring teols directly inte integrated development
environments (IDES) and soltware development workllows is an
ongolng research area. The goal s to provide real-time feedback
and asslstance to developers, enabling them to identify and address
code sioells more efficlently dustag the codlng process,

Codde Smells in Specific Contexts: Exploving code smells in
specific contexts, such as mobile applicabions, distributed systems,
or muchine learning code, 1s an emerging research area, Under-
standing how code snsells manifest and impact different tvpes of
software systems can lead to tailored detection and refactocing
techmiques for specific domains.

Code Smell Visualization and Explainability: Visualizing
codde smells and thelr impact ea software systema eon abd b better
understamling and decislon-making. Research is being conducted
to devebop visualizations that highlight cede smells, their relation-
ships, and their consequences, as well as technigues So explain the
detection results o developers.

Empirical Studies and Benchmarking: Conducting lucge-
seale emprrical studies and creating benchmark datasets for code
smell detection amd classfication bs erucial for evaluating the effec-
tiveness of different technlgues and comparing thels performance.
This helps ln estaldishing best practices and identifving areas that
requtre further lmprovement,

3.5 SACS Detlection Techniques

The literature review identified several technlgues that have been
proposed for the detection of SACS, such as textual analysis, ma-
chine learning and paltern recognition. These technigques adm to
asbract features from tee code or comments and wse them to identify
SACS. Textual analysis techuigues use natural liguage processing
(NLP) Lo adentify SACS in cormments of coinmit messages. Machine

learning technigues use supervised or unsupervized learning al-
gorithms 1o train a model to ddentify SACS. Pattern recoguition
technbgues use predefied patlerns or rules o adentify SACS bncode
of commenits. The review ol that the most commaonly used tech-
nugque for SACS detectbon is lextiual analysis, Tollowed |y machine
learning and patters recognition.

Textual analysis techniques that have been widely employed
for detecting and classifying code smells, with special reference to
sell-admitted code smells are deseribed below.

Kevword-based Approaches: Eevword-based approaches in-
volve dentifying spectlic keywords or phrases in textual artfacts
that Indicate the presence of code sells, Researchers define sets
of keywords that are typacally associated with eode smells xnd use
them as indicators for detection. For seli-admitted code smells, spe-
cific keywaords or phirases in code comements or commit messages
can reveal developers” awareness of the code lssues. By searching
for such keywords, the presence of sell-admatted code smells can
b ditected.

Pattern Matching- Patlern motching technsgues invalve search-
L Tor pr\eﬂuﬁhl.'d. paltems or regular BT PAEMEE 10 tesctual artifacts
Lo identify code smells. These pallerns may caplure commeon lin-
Eubstic structures or conventions associated with code smells. For
example, specific patterns can be wsed to identify code comments
that explicitly admit to the presence of a code smell or use certain
phrases that sugiest the existence of a code lssue.

Machine Learning and Text Classification: Machine leam-
g technegques, such a3 supervised learning algorithms, can be
emploved to classily textual artifacts into categories related Lo
code smells Training datazets consistng of labeled examples {eg.,
self-admitted code sinells and nob-sell-admitted code stnells)are
used to train models that can sutomatically classify new mstances.
These models can learn the linguistic patterns, word frequencies,
ot sertantic fealures associated with diferent types of code smells,
tcluding seli-admitted ones.

Topic Modeling: Tople modeling technigues. such as Latent
Drigiehlet Allocation {LIAY, can be applied to lkentify Latent topics in
Lextul artifacts relaled te code cinells, By analyeing the distribution
of topies b code comements or other textual sousces, tepic madeling
cats uneover discussions or mentiens related o code smells, ineled-
g sell-admitted omes. This approach is particulardy useful when
the explicit keywords or patterns assoctated with self-admitted
code smells are not consistently present.

Sentiment Analysis: Sentiment analysis technbgues aim to
determine the senliment or emalional Lone expressed in textual
artifacts. In the context of code smells, sentiment analvais can be
applied o ldentify eode comments or discussions that express dis-
satisfaction, frustration; or .ill.'liﬂl.'l'JrJl:‘lel“Elil of code isanes. Senti-
menl analyais can provide valuable insights nto the perception of
self-admitted code smells and thew potential mpact on software
quality,

These textual analysis technigues, whether used idividually o
in comblnation, contribute to the detection and classification of
self-admitted code smells. By leveraging NLP and machine learning,
these technigues enable researchers and praclitioners te extract
valuable information from textual artifacts and gain a deeger un-
derstanding of code quality issues within software projects.

The resulting paper

e SACS detections techniques:
reasonable, except that
references to primary studies are
lacking.
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3.6 Effectiveness of SACS Detection Techniques
The literature review analyzed the effectivensss of SACS detection
techniques. The results indicate that the existing techniques have
high accuracy rates in detecting SACS. For nstance, some studies
reported accuracy rates of up to 91%. However, the studies also
Found that the technigues are lmited by their mability to detect
context-specific SACS. Moreover, some studies reported that the
technigques may generate false positives or false negatives, which
Can ]L'Jl] bo mncornect I.'u[l&.'lllsllu:l!.

3.7 l-:'rai:lii:al Implications on Software
Development

The literature review analveed the practical fmplications of SACS
o soltware developrsent. The results indscate that SACS have prac-
tical implications on software development, including code review,
refactoring, and testing. SACS can help developers identify poten-
tal dgsues i the code and prioritize the necessary actions to address
the wsses. Moreover, the review found that SACS can inerease the
efficlency of code review by highlighting the problematic areas in
the code. Additiomally, SACS can gulde the refactoring process by
idicating the areas that require attention.

" 4 RELATED WORK

Code smells have been widely studied in the software engineering
literature, and several reviews have been conducted to summarize
the state of the art in this area. This section provides a selection of
kew references in the field of code smells.

Marinescu [22] provides a comprehensive overview of code
smells and their impact on software quality. The paper also pro-
poses metries-based rules for detecting design flaws, including code
smells, in olject-orented software.

Foowler introduces the concept of refactoring as a technigque to
improve code quality, malntainability, and design [11]. It presents
varbous refactoring patterns and guldelines for identifying and
addressing code amells.

Lil:l.?’.u d:ld .'Plu:'l]:ll::il.'u “Ll,l“rl.' I.Ill.' d[.l[.l]li.'ut:lull llr}llﬁ ware melocs
to characterize and evaluate the design gquality of object-oriented
syatems [20]. They discusses varous metres related to code smells
and thelr practical use in assessing and improving software design.

Research on code smells has been Favored by initiatives like the
ane by Goustos and Spinellis [13], who preovided the GHToreent
dataset, which meledes comprehensive data from GitHub reposi-
torbes. The dataset enables research on code smells, among other
software engineering toples, by offering aceess o a large-scale and
diverse collection of open-source projects,

Palomba et al investigated developers’ perception of bad code
smells [24]. The paper presents a study involving developers’ eval-
watbons of code examples with and without code smells, providing
imsights inte the subjective perceplion of code smells and thelr
impact on maintainability.

e
5 CONCLUSION

The literature review provides a comprehensive view of the current
state-of-the-art technbques for detecting SACS and thedr practical
implications on software development.

The revbew dentified several technbgues that have been proposed
for SACS detection, such as textual analysis, machine learning,
and pattern recognition. Similarly, the veview identified several
proposals concerning the analysis of SACS detection effectiveness,
and thedr practical inplications on soltware development.

The results indicate that the existing technigues have satisfactory
aceuracy rates m detecting SACS but ave limited by their inability
to detect context-specific SACS.

The survey also reports practical benefiots for software develop-
ment, specifiically concerning code review, refactoring, and testing.

The results indicate that SACS detection 15 an important area
of research that can help improve software quality and maintain-
ability. However, the research gaps and Bmitations of the existing
technigues suggest the need for further research in this area. In
particular, it appears that a much needed improvement concerns
the abality to relate SACS to “environmental” characteristics, eg.,
application-spectfic issues, development propoess lssues, people
lagues, ete.
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The resulting paper

e References: | had to write them!
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e No comment mentioned the usage of GAI.

e That is, the reviewers did not suspect that the paper had largely be
produced by GAI.

 The paper was rejected (with reason)
e Essentially, because it was too short and shallow
 Nothing wrong was found, though



@ Questions form the PC

,—?

NL T

§

1

e Q1.: Why are SACs hard to detect using automatic tools? You claim that this
happen because the developer adds the code smells intentionally. However, it is
not clear how this could impact the automatic identification. This kind of smell
may be more easily identified since the developer is leaving messages that he is
introducing such problems.

e Q2.: Could you give examples of the code smells explored in your study?

e Q3.: Which kind of context is harder for the automated tools to identify the SACs?
e 1) Did you know there is no short paper in the research track?

e 2) Why did you not produce a 10-page paper?

e 3) Why do you characterize your paper as an SLR and not systematic mapping?
 Where is your detailed methodology section?
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e Effort was not negligible
* Preparing questions for GAIl requires some thinking

e Understanding how GAIl works, what it can and what it cannot do, etc.
required some time

e Some tasks were not at all supported by GAI
e Retrieving references
e Deriving data about venues and publication times
e Preparing figures and tables
 Making the text homogeneous and consequential
* Formatting

e For producing a paper that had very little chances of being accepted
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* | apologize for producing a paper and having it reviewed, even though | was

\:

not going to publish it eventually.
* |t was for a good cause (this talk), anyway.
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@ Second attempt: using chatGPT 4
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e | used ChatGPT 4 (paying) to address the biggest issues with the previous
paper.
e Findings:
1. Chat GPT 4 is less assertive. It tends to provide suggestions, rather than

ready to use results.

e This was OK for the methodology: the suggestions on how to carry out the survey
became a description of how it was carried out.

2. Chat GPT 4 is no better with references: it invented them exactly as
ChatGPT 3.5

3. Like ChatGPT 3.5, also ChatGPT 4 is noty able to retrieve information
from the internet.



@ Access to papers

. &
gy s

 The two versions of the paper are available at:

e https://drive.google.com/drive/folders/1aaVMDjnnVAFBTpg7s9hgF2Rsjp
anNZhA?usp=sharing

e Or bit.ly/lavazza-ICSEA23
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@ Comments and questions

* Who was the author of the paper?
e GAl contributed a lot, but its product was definitely not an acceptable

result.
e What if the paper had been accepted?
* The resulting paper is not worse than several published papers | read...

 Would it have been ethical to publish it?



