Holger Ziekow Norbert Marschner Dunja Klein Benjamin Kasenda

Nina Haug iOMEDICO AG Biostatistics Freiburg, Germany nina.haug@iomedico.com Identification of Factors Guiding Treatment Decision in Oncology by Rapid Data Insights Using AI and XAI a Pilot Study on Real-World Data

HOCHSCHULE FURTWANGEN UNIVERSITY

IARI/

- Universitätsspital Basel

iO

IOMEDICO

	Resume	
Al and XAl in Oncology	2013 – 2017	PhD (Applied Mathematics) Queen Mary University of London London, UK
AI and XAI	2017 – 2020	Postdoctoral Researcher Center for Medical Data Science Medical University of Vienna, Vienna, Austria
	2017 – 2020	Resident Scientist Complexity Science Hub Vienna, Vienna, Austria
	2020 – 2021	Data Scientist Wiener Linien, Vienna, Austria
iO	since 2021	Senior Data Scientist — Statistics iOMEDICO AG, Freiburg, Germany

Background

- Knowledge in oncology expands rapidly, with an estimated 175,000 new research papers published in 2020 alone
- Medical guidelines, summarize results from many research papers, are the main source of information regarding therapy standards for physicians
- Until present, medical knowledge mainly comes from randomized controlled trials (RCTs) with strict in- and exclusion criteria
- Patients included into RCTs are often not representative for patients encountered during routine clinical care
- Results from RCTs are only made available with a considerable **time lag**, in the form of medical guidelines
- RCT results suffer from publication bias

Background

- At iOMEDICO, we collect data about treatments in routine clinical care — Real World Data (RWD)
- They also capture information on treament decisions and outcomes for patients who would not be included into an RCT (e.g., very old patients)
- RWD thus contain a large amount of latent knowledge

Can AI and XAI be used to make the latent knowledge contained in RWD accessible to the treating physician?

Research questions

Can AI predict what treatment a clinician would give to a colorectal cancer patient?

Can XAI methods render the reasoning of the AI model interpretable?

Can AI techniques be used to define a meaningful distance metric for patients?

How does data availability impact performance of Albased therapy prediction?

Our data

Tabular data on n = 3,563 patients treated for advanced colorectal cancer between 2006 and 2018, including

- patient demographics (e.g. age, sex)
- concomittant diseases (e.g. diabetes mellitus, hypertension)
- disease characteristics (e.g. tumor size, metastasis locations)
- prior therapies (e.g. surgeries, curative chemotherapy)
- palliative first-line therapy (can be grouped by principle)

Our data

Tabular data on n = 3,563 patients treated for advanced colorectal cancer between 2006 and 2018, including

- patient demographics (e.g. age, sex)
- concomittant diseases (e.g. diabetes mellitus, hypertension)
- disease characteristics (e.g. tumor size, metastasis locations)
- prior therapies (e.g. surgeries, curative chemotherapy)
- palliative first-line therapy (can be grouped by principle) target

67 variables = predictors

Architecture and key components

Experiments

- 1) We test how well AI models can predict therapy selection for advanced colorectal cancer patients
- 2) We use Shapley values to render the predictions from the algorithm explainable and discuss several examples
- We define a similarity metric between patients based on Shapley values and test the performance of the metric in a KNN-classifier compared to a baseline metric
- 4) We evaluate the dependency of the amount of training data on the quality of AI-based therapy predictions

- We selected a stratified random set of 60% of our data for training
- We trained an XGBoost classifier with balanced class weighting to predict therapy decisions based on patient and disease characteristics. Hyperparameters were selected using Bayesian optimization
- As benchmark methods we used a random forest, multinomial logistic regression, a linear support vector classifier, a decision tree and a dummy classifier
- We evaluated the quality of predictions on the 40% of data held out for testing, using macro-averaged f_1 score, and plotted confusion matrices and ROC curves

Classifier	macro-averaged f_1	
XGBoost	0.21	
Random Forest	0.23	
Logistic Regression	0.17	
Linear Support Vector Classifier	0.17	
Decision Tree	0.19	
Dummy Classifier	0.09	

Table: Performance of different algorithms in therapy prediction — case of 8 different therapy classes.

Figure: Confusion matrix for therapy prediction by XGBoost classifier (8 therapy classes)

Experiment 2 — Insights with feature importance measures

Figure: Shapley values for and against 5-FU mono therapy for a patient where the algorithm correctly predicted 5-FU mono therapy.

Al and XAl in Oncology

AI and XAI in Oncology

Age at start of 1-line Date of inclusion BMI Weeks since primary diagnosis Lymph node ratio (at primary diagnosis) 5-FU Mono + AB KRAS status Gender Other Liver metastases Triplet + AB Type of primary surgery 5-FU Mono ECOG status Triplet Number of metastases at start of 1-line Lymph nodes at primary diagnosis Other + AB RAS status Doublet Location of tumor (Colon/Rectum) Doublet + AB Laterality of tumor

Experiment 2 — Insights with feature importance measures

mean(|SHAP value|) (average impact on model output magnitude)

Figure: The 15 most important features for therapy prediction, with importance measured in terms of their global Shapley value.

Experiment 3 — Benefits of AI-based similarity metric

- We represent each patient by a vector $v = (v_1, v_2, ..., v_m)$, with $m = p \cdot n$. Here, p is the number of patient features and n is the number of target classes
- For each therapy class k and feature j, the entry v_{(k-1)·p+j} is the Shapley value of feature j for the one-vs-all prediction of therapy class k
- The distance between two patients with vector representations $v^{(1)}$ and $v^{(2)}$ is then defined as $d = \|v^{(1)} v^{(2)}\|_1$ (the Manhattan distance)
- For a benchmark metric, we represent each patient by a vector $w = (w_1, w_2, ..., w_p)$, for a feature *j*, the entry w_j is the value of feature *j* (with categorical variables one-hot encoded) and use Manhattan distance
- We test the performance in therapy prediction of two KNN-classifiers based on the Shapley-based metric and the benchmark metric, respectively

Experiment 3 — Benefits of AI-based similarity metric

Score type	Classifier	Score value
f_1 (macro average)	KNN (Shapley)	0.18
	KNN (Baseline)	0.16
f_1 (weighted average)	KNN (Shapley)	0.49
	KNN (Baseline)	0.49
Accuracy	KNN (Shapley)	0.54
	KNN (Baseline)	0.55

Experiment 4 — Impact of data availability

- From the 3,563 patients, we set aside a fixed random subset of 40% for testing
- We iteratively took 90% stratified subsets of the remaining 60% of the data and on each subset, we fitted an XGBoost classification model
- For each model and therapy class, we tested performance of the trained classifier on the test set (*f*₁ score for one-vs-all)
- The process was repeated 10 times with different random seeds

Experiment 4 — Impact of data availability

Figure 7: Impact of the number of training samples of a given therapy class on the model's performance in labeling these samples.

iO

AI and XAI in Oncology

Summary and conclusion

- Tree-based methods performed better than other statistical and ML algorithms in predicting therapy decisions
- Classification performance was rather poor, but this may be expected since different experts may prescribe different treatments to the same patient
- We demonstrated how Shapley values can be used to render therapy predictions interpretable
- We assessed the impact of the number of training examples on prediction quality

Limitations

- Our approach learns therapy decisions from past records. However, the therapy landscape in oncology changes rapidly, leading to concept drift
- Therapy outcomes of patients, such as overall survival, were not considered
- Feature selection was not done in the present work. Due to the high number of features, the Shapley-based distance metric may suffer from the curse of dimensionality
- Shapley values are a measure for the impact of a feature on a prediction. However, they do not imply causality