

DigitalWorld 2023 Congress

The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

GEOProcessing 2023

Visualization System for the Positioning of Sunken Vessels Using Underwater Acoustic Devices

ENGSOFT Inc.

Dr. Dohyeong Kim(Presenter)

(E-mail: dhkim@engsoft.kr)
Dr. Sang-Hyeok Nam

Ocean Planet Inc.

Jongryong Choi Donguoon Kim

PRESENTER

Ph.D. Dohyeong Kim ENGSOFT Inc.

Doctor in Civil engineering from Dongguk University , South Korea

Steel structures FEM

Researcher in DASCO Inc., South Korea

BIM

Welded wire fabric & Bar mesh

Researcher in ENGSOFT Inc., South Korea

Monitoring system
GIS
Wireless sensor

Contents

Introduction

Components of SVPIS

Design Concept of SVPIS

Positioning through TDOA

Visualization System

Conclusion

Future Works

(4) Introduction

EPIRB

SVPIS

Sunken Vessel Position Identification System

Real-time tracking System for sunken vessels

Components

- Underwater Signal Generator (USG)
- ► Floating Signal **Receiver** (FSR)
- Positioning & Visualization System (PVS)

Reduce searching time to improve rescue efficiency and minimize loss of life and property

COMPONENTS OF SVPIS

Underwater Signal Generator (USG)

- Operating procedures:
 - 1. Automatically deployed by water pressure
 - 2. Rises 10m in the water (connected to hull with cable)
 - 3. Generate sound signals and flashing LED lights
- Continuous operation time: 36 months

Floating Signal Receiver(FSR)

- Operating Procedures:
 - 1. Devices synchronization for four FSRs in a group
 - 2. Deploy in any groups of FSR on the water surface
 - 3. Receiving acoustic signals from USG and getting self location(GPS)
 - 4. Send TOA and GPS coordinates to PVS
- Can be configured in various forms depending on specific requirements
 - Sensors can be included for measuring (temperature, current, water status, etc.)

Positioning & Visualization System (PVS)

- Operating Procedures:
 - 1. Registering devices before FSR deployment
 - 2. Positioning sunken vessel(USG) through receiving data from FSRs
 - 3. Displaying location of USG, FSR and PVS
 - 4. Displaying environmental information that affects rescue works (weather and maritime conditions)

DESIGN CONCEPT OF SVPIS

O POSITIONING THROUGH TDOA

2-dimensional positioning through TDOA (using 3 FSRs)

Transmission and Reception of TDOA positioning

Least Square algorithm

- ► The easiest and cheapest solution
- → Highly nonlinear coupled equation
 → improve solutions are proposed
 (Bucher, Bard, Smith, Chan-Ho, etc.)

$$2\begin{bmatrix} x_2' & y_2' & \frac{r_{2,1}}{2} \\ \vdots & \vdots & \vdots \\ x_n' & y_n' & \frac{r_{n,1}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ r_1 \end{bmatrix} = \begin{bmatrix} k_2' - r_{2,1}^2 \\ \vdots \\ k_2' - r_{2,1}^2 \end{bmatrix} \Rightarrow 2\mathbf{A}\mathbf{p} = \mathbf{k}$$
$$(x_n' = x_n - x_1, \quad r_{n,1} = r_n - r_1)$$
$$\therefore \mathbf{P} = \frac{1}{2} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{k}$$

VISUALIZATION SYSTEM

Underwater Positioning
System through
Acoustic Signal

Real-time location tracking of sunken vessels

Minimizing resource

(human and material) inputs for underwater search

Maximizing the efficiency

of underwater search and rescue operations

Prevent

marine pollution and secondary accidents

5 FUTURE WORKS

Challenges (Ensure underwater positioning accuracy)

- Noise in underwater acoustic signals
 (marine life, water turbulence, sea surface reflection, man-made objects, etc.)
 - → Noise filtering Method(matched filtering, adaptive filtering, wavelet denoising, etc.)
 - → Deep-learning
- Strict time synchronization between FSRs
 - → Master clock approach
 - → Ping synchronization method
 - → Hybrid method

Possible applications

- Applicable to all modes of transport over water
 - → Contribute to not only ships
 - → But all underwater vehicles, including helicopters, drones, and submarines.
- Expanding applications through miniaturization of underwater signal generator
 - → Tracking the location of underwater rescuers
 - → Underwater and marine leisure sports

