DigitalWorld 2023 Congress
The Fifteenth International Conference on Advanced Geographic
Information Systems, Applications, and Services
GEOProcessing 2023

# Visualization System for the Positioning of Sunken Vessels Using Underwater Acoustic Devices 

ENGSOFT Inc. Dr. Dohyeong Kim(Presenter) $^{\text {E }}$<br>(E-mail: dhkim@engsoft.kr)<br>Dr. Sang-Hyeok Nam

| Ocean Planet Inc. | $\begin{array}{l}\text { Jongryong Choi } \\ \text { Donguoon Kim }\end{array}$ |
| :--- | :--- |



## Ph.D. Dohyeong Kim

ENGSOFT Inc.



## Contents

Introduction<br>Components of SVPIS<br>Design Concept of SVPIS<br>Positioning through TDOA<br>Visualization System<br>Conclusion<br>Future Works

## G Introduction



## G INTRODUCTION

## SVPIS

## Sunken Vessel Position Identification System

## Real-time tracking System <br> for sunken vessels

## Components

- Underwater Signal Generator (USG)
- Floating Signal Receiver (FSR)
- Positioning \& Visualization System (PVS)

Reduce searching time to improve rescue efficiency and minimize loss of life and property


## © Components of SVPIS



## Underwater Signal Generator (USG)

- Operating procedures:

1. Automatically deployed by water pressure
2. Rises 10 m in the water
(connected to hull with cable)
3. Generate sound signals and flashing LED lights

- Continuous operation time: 36 months


## Floating Signal Receiver(FSR)

- Operating Procedures:

1. Devices synchronization for four FSRs in a group
2. Deploy in any groups of FSR on the water surface
3. Receiving acoustic signals from USG and getting self location(GPS)
4. Send TOA and GPS coordinates to PVS

- Can be configured in various forms depending on specific requirements

Sensors can be included for measuring (temperature, current, water status, etc.)


## Positioning \& Visualization System (PVS)

- Operating Procedures:

1. Registering devices before FSR deployment
2. Positioning sunken vessel(USG) through receiving data from FSRs
3. Displaying location of USG, FSR and PVS
4. Displaying environmental information that affects rescue works (weather and maritime conditions)

## G Design Concept of SVPIS



## G Positioning through TDOA

2-dimensional positioning through TDOA
(using 3 FSRs)


Transmission and Reception of TDOA positioning


Least Square algorithm

- The easiest and cheapest solution
- Highly nonlinear coupled equation
$\rightarrow$ improve solutions are proposed (Bucher, Bard, Smith, Chan-Ho, etc.)

$$
\begin{gathered}
2\left[\begin{array}{ccc}
x_{2}^{\prime} & y_{2}^{\prime} & \frac{r_{2,1}}{2} \\
\vdots & \vdots & \vdots \\
x_{n}^{\prime} & y_{n}^{\prime} & \frac{r_{n, 1}}{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
r_{1}
\end{array}\right]=\left[\begin{array}{c}
k_{2}^{\prime}-r_{2,1}^{2} \\
\vdots \\
k_{2}^{\prime}-r_{2,1}^{2}
\end{array}\right] \Rightarrow 2 \mathbf{A p}=\mathbf{k} \\
\left(x_{n}^{\prime}=x_{n}-x_{1}, \quad r_{n, 1}=r_{n}-r_{1}\right) \\
\therefore \mathbf{P}=\frac{1}{2}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{k}
\end{gathered}
$$

## G Visualization System



## SVPIS <br> Underwater Positioning <br> System through Acoustic Signal

Real-time<br>location tracking<br>of sunken vessels

Minimizing resource<br>(human and material) inputs for underwater search<br>Maximizing the efficiency<br>of underwater search and rescue operations

Prevent
marine pollution and
secondary accidents

## G Future Works

Challenges (Ensure underwater positioning accuracy)

- Noise in underwater acoustic signals (marine life, water turbulence, sea surface reflection, man-made objects, etc.)
$\rightarrow$ Noise filtering Method(matched filtering, adaptive filtering, wavelet denoising, etc.)
$\rightarrow$ Deep-learning
- Strict time synchronization between FSRs
$\rightarrow$ Master clock approach
$\rightarrow$ Ping synchronization method
$\rightarrow$ Hybrid method


## Possible applications

- Applicable to all modes of transport over water
$\rightarrow$ Contribute to not only ships
$\rightarrow$ But all underwater vehicles, including helicopters, drones, and submarines.
- Expanding applications through miniaturization of underwater signal generator
$\rightarrow$ Tracking the location of underwater rescuers
$\rightarrow$ Underwater and marine leisure sports


This research was financially supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy of Korean government under grant No. 2022DCME01(9991008568).

