The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

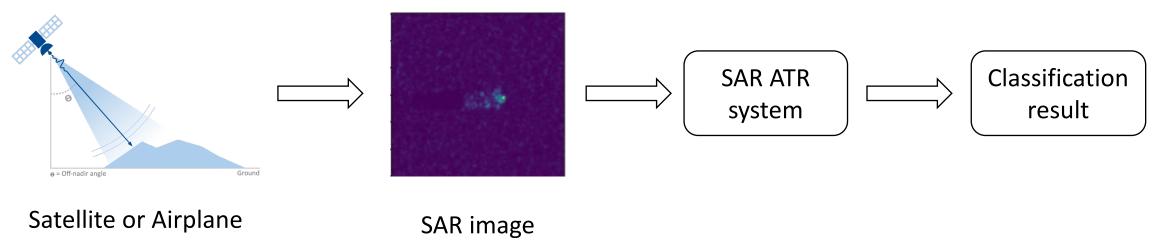
Graph Neural Network for Accurate and Lowcomplexity SAR ATR

Bingyi Zhang University of Southern California bingyizh@usc.edu

SAR Automatic Target Recognition (SAR ATR)

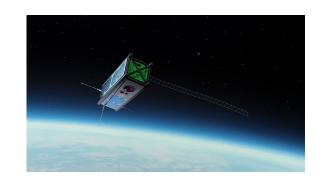
- SAR: Synthetic Aperture Radar
- SAR ATR: One of the most crucial and challenging issues in SAR application technology
- SAR image is captured by satellites or airplanes

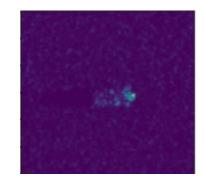
Graph Neural Network for Accurate and Low-complexity SAR ATR



Challenges

- Traditional deep learning-based methods exploit convolutional neural network (CNN) for SAR ATR.
- CNNs have heavy convolution operations, leading to:
 - High computation complexity
 - Large memory requirement
- Due to the above challenges, SAR ATR is hard to be deployed on resourcelimited platforms, such as small/micro satellites.
- CNN does not exploit the sparsity of the SAR image

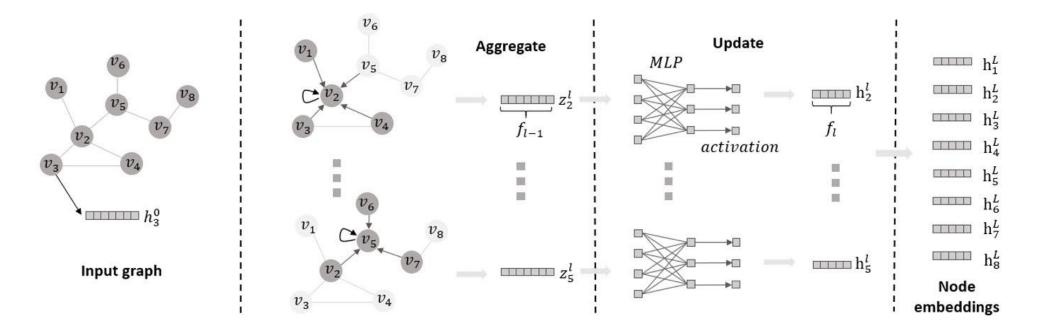




SAR image

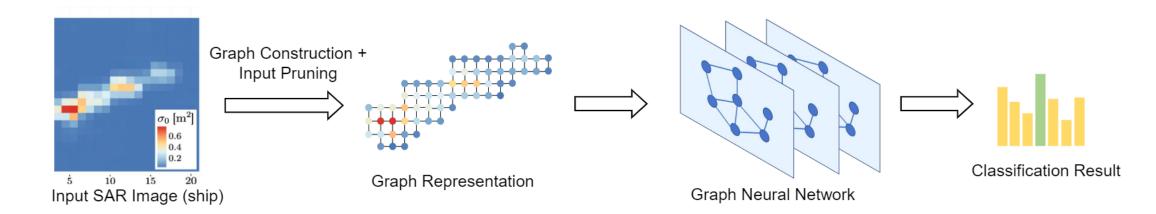
Graph Neural Network

- Graph neural network (GNN) has a stack of GNN layers. Each layer follows the Aggregate-update paradigm:
 - Aggregate: each vertex aggregates features from its neighbors
 - Update: each vertex feature vector is transformed by MLP



Motivation

- Motivation 2: In a SAR image, most pixels are irrelevant
- Proposed Approach:
 - GNN-based model-architecture codesign
 - Construct input graph from SAR image
 - Develop a GNN model for classifying the graph



Proposed Approach

- Build input graph from SAR image:
 - $\mathcal{G}(\mathcal{V}, \mathcal{E}, X)$
 - Each pixel in the SAR image is mapped to a vertex $v \in \mathcal{V}$ in the graph
 - Each pixel is connected to its neighbors as the edge connections \mathcal{E} .
 - 4-connectivity
 - 8-connectivity

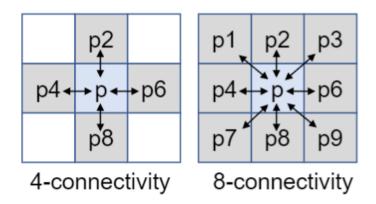


Figure 4. Two types of connectivity for constructing input graph

Proposed Approach

- Model Architecture
 - Graph Neural Network layer
 - E.g., GCN, GraphSAGE, GIN, SGC, etc
 - Graph pooling layer
 - Attention layer
 - Feature Attention: identify important vertex features
 - Vertex Attention: identify important vertices

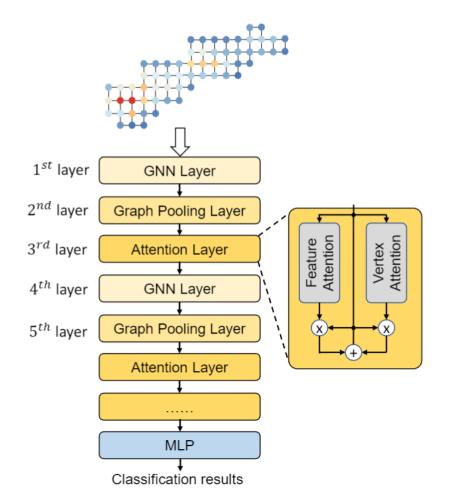


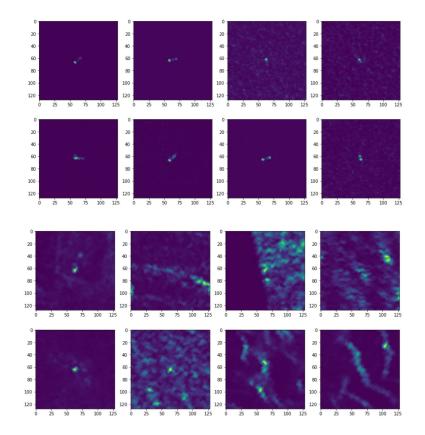
Figure 5. Diagram of model architecture

Dataset

- Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset
- Ship discrimination dataset

MSTAR dataset

Ship discrimination dataset



Experimental Result (MSATR dataset)

- Impact of GNN backbone:
 - GraphSAGE layer leads to highest accuracy

TABLE II. THE ACCURACY ON MSTAR DATASET

GNN Layer Type	Connectivity	Training Accuracy	Testing Accuracy	Training Time
GCN	4 8	$99.16\%\ 95.44\%$	$90.06\%\ 83.82\%$	3.0 hours 4.0 hours
GAT	4 8	$99.53\%\ 82.71\%$	92.21% 71.33%	1.8 hours 1.9 hours
GraphSAGE	4 8	$\frac{100.00\%}{100.00\%}$	$97.81\%\ 99.38\%$	52 min 55 min

- Impact of attention mechanism:
 - Both vertex attention and feature attention lead to increased accuracy

TABLE IV. THE IMPACT OF THE ATTENTIONMECHANISM (USING GRAPHSAGE LAYER AND8-CONNECTIVITY)

Vertex Attention	Feature Attention	Training Accuracy	Testing Accuracy	Training Time
×	×	99.67%	93.77%	31 min
×	1	100.0%	98.51%	40 min
1	×	100.0%	99.26%	41 min
✓	✓	100.0%	99.38%	55 min

Experimental Result (MSATR dataset)

- Comparison with state-of-the-art:
 - The proposed GNN model achieves higher accuracy compared with the state-of-the-art CNNs [11], [12], [14], [15] with negligible computation complexity for inference.

TABLE III. COMPARISON WITH THE STATE-OF-THE-ART CNNS ON MSTAR DATASET

	Туре	Accuracy	# of FLOPs	# of Para.
[11]	CNN	92.3%	$\frac{1}{12} \times$	0.5×10^6
[14]	CNN	97.97%	$\frac{1}{10} \times$	0.65×10^6
[15]	CNN	98.52%	$\frac{1}{3} \times$	2.1×10^6
[12]	CNN	99.3%	1× (6.94 GFLOPs)	2.5×10^6
This work [after pruning] (GraphSAGE layer, 8-connectivity)	GNN	99.1%	$\frac{1}{3000} \times$	0.03×10^6

• [11] M. Zhang, J. An et al., "Convolutional neural network with attention mechanism for sar automatic target recognition," IEEE Geoscience and Remote Sensing Letters, 2020.

• [12] D. A. Morgan, "Deep convolutional neural networks for atr from sar imagery," in Algorithms for Synthetic Aperture Radar Imagery XXII, vol. 9475. SPIE, 2015, pp. 116–128.

• [14] J. Pei, Y. Huang et al., "Sar automatic target recognition based on multiview deep learning framework," IEEE Transactions on Geoscience and Remote Sensing, 2017.

• [15] Z. Ying, C. Xuan et al., "Tai-sarnet: Deep transferred atrous-inception cnn for small samples sar atr," Sensors, vol. 20, no. 6, p. 1724, 2020

Acknowledgement & Contact Info.

□ This work was supported by

- □ NSF: CCF-1919289, OAC-2209563
- DEVCOM Army Research Lab (ARL) under grant:
 - □ W911NF2220159.
- If you have any questions, please contact us through the email <u>bingyizh@usc.edu</u>
- □ For more related work, please check our website:

https://sites.usc.edu/fpga/publications/

THANKS FOR YOUR LISTENING

