
OnLine Estimation of Quantum
Information Systems

ADAPTIVE 2023, Nice, France, June 2023
https://www.iaria.org/conferences2023/ADAPTIVE23.html

Mark J. Balas
Leland T. Jordan Professor of Control
and Dynamic Systems
Mechanical Engineering Department

Texas A&M University

College Station, TX, USA 77843

mbalas@tamu.edu



 Mark Balas is the Leland T. Jordan Professor of Dynamical Systems at the Texas A&M University. He has

the following technical degrees: PhD in Mathematics, MS Electrical Engineering, MA Mathematics, and BS

Electrical Engineering. He has held various positions in industry, academia, and government. Among his

careers, he has been a university professor for over 45 years with University of Tennessee, RPI, MIT, University

of Colorado-Boulder, University of Wyoming, Embry-Riddle Aeronautical University and has mentored 47

doctoral students to completion of their degrees. He has over 400 publications in archive journals, refereed

conference proceedings and technical book chapters. He has been visiting faculty with the Institute for

Quantum Information and the Control and Dynamics Division at the California Institute of Technology, the US

Air Force Research Laboratory-Kirtland AFB, the NASA-Jet Propulsion Laboratory, the NASA Ames Research

Center. He is a life fellow of the American Institute of Aeronautics and Astronautics (AIAA), a life fellow of the

Institute of Electrical and Electronic Engineers (IEEE), and a fellow of the American Society of Mechanical

Engineers (ASME). He is the recipient of the AIAA GNC Control Systems Heritage Lifetime Achievement award

2018. But, if he is ever well-known, it will be as the father of the prominent Denver Drum and Bass DJ known as

Despise, who is his daughter Maggie; now Doctor Despise (Molecular Biology).



2



Quantum Probability vs
Classical Probability
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Quantum Basics:
Quantum Probability
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QuantumProbability:

EventSpace : complex (infinite-dimensional, separable) Hilbert Space
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Dynamics: Schrodinger Wave Equation
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Dynamics: Schrodinger Wave Equation
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QuantumMeasurement
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The interpretation of
Quantum Measurement
is still a controversial
part of Quantum Theory

Back Action

,

Entanglement

( )

S M

S M
kl k l

k l

X X X

h w   

 

   

A quantum measurement is an
entanglement with the
environment ( measuring
device)


2 2 2 34

2

Heisenberg Uncertainty Principle

( ) ( ) ([ , ] , ) ( ) ; 10
2

i

z p z p       





The Other
Heisenberg

The Real
Heisenberg



Quantum Collapse:
Ontology vs Epistemology
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Quantum Statistical
Mechanics

*
1 2 1 2Quantum Density Operators : with (Hilbert-Schmidt) inner product ( , ) ( )

(These carry all the quantum probability information & are often thought of as quantum states)
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Quantum Measurement
POVM=Positive Operator-Valued Measure
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Quantum Dynamical System

0

[ , ] ( ) ,
:
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Quantum Master Equation
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A Basic Online Linear Estimator
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The Set of All Quantum Density
Operators

* 2

1 2

{ | ; 0; 1; 1} Unit Ball in

Theorem: is a closed, convex subset of , & is bounded ( Unit Ball),
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Projection Operator for Closed Convex Sets in Hilbert Space

Hilbert Space with closed, convex .

: :

is the (metric) Projection of x onto S when

( , ) min

S

S

S z S

X S X

P X S

P x

x X x P x d x S x z





     



2

* * *

Properties of the Projection

1) ( ) is defined

2) ( )

3) ( )

4) Re( , ) 0 ("Principle of Orthogonality, sorta")

5) is Lipschitz Continuous, . .

S

S

S S

S

Error

S S S

P x x X

P x x x S

P P idempotent

x P x x x z x z S

P i e P x P y

 

  



      

 ,

.S

x y x y X

But P is NOT Linear

   



Modified Quantum Estimator
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Quantum Information Theory

1

Classical: Shannon Entropy ( ) log ,

"the average amount of information gained from learning the value of the random variable "

or "the average uncertainty before learning the value of x"
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Qubit Estimator
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Adaptive Quantum State Estimation in Hilbert Space
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Quantum Cognition

Model of
Human Decision-Making

NSF Proposal: A Quantum Approach to Human Cognition and the Autonomy Conundrum in
Self Driving Vehicles, James Hubbard and Mark Balas
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QuantumProbability:

EventSpace : complex

(infinite-dimensional, separable) Hilbert Space

{ , , ,....} orthonormal basis ( , )
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“We don’t know where we are stupid
until we stick our necks out”
………………..Richard Feynman


