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 Introduction

Ministry of Agriculture, Forestry and Fisheries "Agriculture and Forestry Census"
(Aggregate Compilation), "Agricultural Structural Dynamics Survey" 2022.

Fuji apples

Fuji Apples in Japan: High quality, high price

However, Labor shortage challenges in Japan's agriculture

Agricultural automation technology: Solving labor issues

Pruning: Key aspect in agriculture, not yet fully automated

The benefits of proper pruning:

• Stimulate the growth of new
buds and shoots

• Facilitate management and
harvesting.

• Promote fruit
growth

• Increase fruit yield



 Introduction

Traditional pruning rules, such as:

• Ventilation, light penetration, and transparency of the branches.

• The branches should be smaller than the trunk.

• The lowest branch should be 2 to 3 feet above the ground, etc.

Therefore, many studies are focused on how to obtain the
structure of apple trees in order to achieve pruning automation.

Iwate Prefecture Hanamaki City Apple
Orchard



 Related work

2014 - Identification of pruning branches in tall spindle apple
trees for automated pruning.

2018 - Branch detection for apple trees trained in fruiting
wall architecture using depth features and Regions-
Convolutional Neural Network (R-CNN).

Specific
environmental
limitations.

• M. Karkee et al. (2014) proposed a
method for constructing 3D models
of apple trees using Time-of-Flight
(ToF) 3D cameras and implementing
automated pruning of tall spindle
apple trees through optimized
algorithms.

• J. Zhang et al. (2018) proposed a
branch detection method for apple
trees with fruiting wall architecture
using depth features and Regions-
Convolutional Neural Network (R-
CNN) based on pseudo-color
images.

Extracting fine tree
branches with ToF 3D
cameras is complex.



 Objective

Our research proposes a new computer vision method based solely on RGB
cameras, aiming to address two critical issues:

• Difficulty in detecting slender branches.

• Specific environmental limitations.



 Materials and Methods

Extracting tree structure from an RGB
image

Extract Skeletonize Structure

• Extracting the
branches and trunk
sections.

• Skeletonized
extraction of
images (feature
extraction).

• Exploring the
topological
structure of apple
trees.



 Dataset

Selected 9 Trees from Hanamaki Orchard
Japan

Creating annotations using Labelme tool.

Original
image

Annotation image

Dataset information:

• Image size : 1920 x 1080

• Train images: 143

• Validate images: 20



 Experiment

The UPerNet and SegFormer models were found to be superior
in terms of accuracy and IoU.

 Tree extraction from RGB images using
semantic segmentation models

*) Each model was trained using the OpenMMlab
framework.



 Experiment

 Tree Branch Skeletonization

• STEP 1: Apply morphology dilation to the
image resulting from segmentation to
connect non-contiguous branches.

• STEP 2: Apply thinning to the image
using skeletonization method.

Segmentation result After STEP 1 After
STEP 2



 Experiment

 Structuring Tree Branches

Breadth-first Search for searching the tree data structure



 Result

#1

 Automated apple tree topological structure extraction results

Input (RGB) Topological Structure Input (RGB) Topological Structure



 Result

#1

 Automated apple tree topological structure extraction results

Input (RGB) Topological Structure Input (RGB) Topological Structure



 Conclusion and Future work

Conclusion

• Successfully extracted apple branches and topological structure.

• The SegFormer model was found to be the most effective segmentation
model.

Future work :)

• Develop automatic pruning based on the topological structure.

• Compare the apple tree images before and after pruning.

• Collect more image datasets.

• Modify the hyperparameters of the neural network.



Thank you for your attention
ბ
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