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Software Systems Change over Time

® Real-world software systems are ...
® large
¢ developed over time
® subject to changing business and technical environments

¢ developed by changing groups of developers

® In principle, developers need only a text editor to make changes
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Software Development & Analysis Tools (SDATS)

® In practice, specialized tools (SDATs) are needed to ...
® analyze potential changes
® make actual changes
® catch errors arising from incomplete or incorrect changes
® SDATSs usually build atop analysis-oriented models of the software

® abstract syntax trees (ASTs)

control-flow graphs
® type hierarchies

¢ call graphs
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Size versus cost

Computing any such model has a cost
Small software: typically, low cost

Large software: typically, high cost

® e.g., system dependence graphs can take days to compute for enterprise-scale
software

When software undergoes changes, its models become obsolete
® Model update can be complex, error-prone, and still expensive

® Model re-computation has the same cost as the original

Since real software undergoes change constantly, its models can be
obsolete before they are fully re-computed
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Caching versus Re-computation

® When the software system is re-started, we can ...
® recompute its models, paying the same cost as originally done

® reload a cached version of its models from offline storage

® perform a combination of these
® For caching & reloading, there are several sources of cost:

® communicating with an offline storage system
° e | di caching
writing to an external storage medium size & complexity of models,
® reading from the external storage medium details of storage technology
reloading

¢ communicating with the offline storage system
¢ Reloading a cached version may or may not be cheaper than re-computation!
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Dimensions of Consideration

¢ Datastore technologies
® Flat files: simple text; comma-separated values (CSV); JSON
® Relational database management systems: e.g., MySQL, PostgreSQL, etc.

® Non-relational database systems: NoSQL; graph databases (e.g., Neoj); cloud storage
(e.g., Google Cloud)

¢ Datasets
® Academic studies tend to utilize toy datasets, constructed from random graphs

® Non-academic studies tend to suffer from potential bias

® Use cases

¢ SDATs use graphs, so graph-based operations should be studied
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Our Study (1/4)

® Research question: How do different database technologies perform on realistic
operations over realistic software analysis models?

® Many details in the paper
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Our Study (2/4)

® The technologies we chose to examine:

® (SVfiles via the Python-based NetworkX library
° MySQL

¢ PostgreSQL

® Neoyj
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Our Study (3/4)

® We generate nine scale-free graphs via the Barabasi—Albert model
® linear preferential attachment model (“the rich get richer”)
® probability of adding an edge with a node is proportional to local degree of connectivity
® two dimensions
® #nodes: 100, 1 000, and 10 000
® density: 2%, 10 %, 25%
® We used a custom Python implementation based on the NetworkX library to
generate these
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Our Study (4/4)

® We examine 8 use cases

® (UCa) Create/store a graph

® (UC2) Read/access a graph

® (UC3)Add anode

® (UC4) Add an edge

® (UCs) Rename an edge

® (UC6) Change source and target nodes of an edge
® (UCy) Delete a node

¢ (UC8) Delete an edge
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UCa: Create/Store a Graph
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UC2: Read/Access a Graph
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UC3: Create a Node without Edges
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UC4: Create an Edge between Existing Nodes

Time in ms

10¢

10°

== Python-CSV
-6~ MysoL
£ Neod)
¢ PostgreSQL

" ~N

10° 10° 10¢ 10° 10° 107
Edge count

Time in ms

10¢

10°

10*

Performance and Scalability of Datastore Technologies for Software Analysis Models

=== Python-CSV v

=== MySQL

-== Neod) V-

=== PostgreSQL Pl

G------- GO mmmeE i e B )

MHmm—————— ac-:;rg- --------- W mmm——— ==X
4"" v

v

g--=---- e g----0

10* 10° 10° 107

Edge count

ACCSE 2023 14

14



2023-06-24

UCs

: Rename a Node
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UC6: Change Source & Target Nodes
.
=%~ Python-CSV -=- Python-CSV v
- MysaL — -~
"2 E of o
T Pestgresal === PostgreSQL ,a”
10° R
g g 10° L
c £ -
u © w -
& < " 5 -—g------- &----0
107
Hemmm e X
w1 PR —
O T W 10 w0
Edge count Edge count
Performance and Scalability of Datastore Technologies for Software Analysis Models ACCSE 2023 16

16

16



2023-06-24

UC7: Delete a Node and
Its Corresponding Edges
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UC8: Delete a Specific Edge
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Conclusions

® For creating/storing a graph, Python-CSV is the clear winner
For reading a graph, PostgreSQL is the best option for large graphs
® For the other 6 use cases, Neosj is the best option for large graphs

The correct choice would depend on the profile of the application

¢ HOWEVER...

® This study did not consider the cost of the connector technology needed for programmatic
access to core-memory representations; this can be EXPENSIVE

® Afarsimpler approach, like object serialization, could suffice for caching/reloading where
external manipulation of the graphs is not needed

¢ Additional study is needed to determine the comparative, full costs for both issues
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THANKYOU

Prof. Robert J. Walker, walker@ucalgary.ca
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