2023-06-24

ACCSE 2023

Performance and Scalability
of Datastore Technologies for
Software Analysis Models

Kanishgk Singh and Robert J. Walker
University of Calgary

Calgary,Canada

2023-06-24

Software Systems Change over Time

® Real-world software systems are ...
® large
¢ developed over time
® subject to changing business and technical environments

¢ developed by changing groups of developers

® In principle, developers need only a text editor to make changes

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

2023-06-24

Software Development & Analysis Tools (SDATS)

® In practice, specialized tools (SDATs) are needed to ...
® analyze potential changes
® make actual changes
® catch errors arising from incomplete or incorrect changes
® SDATSs usually build atop analysis-oriented models of the software

® abstract syntax trees (ASTs)

control-flow graphs
® type hierarchies

¢ call graphs

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 3

2023-06-24

Size versus cost

Computing any such model has a cost
Small software: typically, low cost

Large software: typically, high cost

® e.g., system dependence graphs can take days to compute for enterprise-scale
software

When software undergoes changes, its models become obsolete
® Model update can be complex, error-prone, and still expensive

® Model re-computation has the same cost as the original

Since real software undergoes change constantly, its models can be
obsolete before they are fully re-computed

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

2023-06-24

Caching versus Re-computation

® When the software system is re-started, we can ...
® recompute its models, paying the same cost as originally done

® reload a cached version of its models from offline storage

® perform a combination of these
® For caching & reloading, there are several sources of cost:

® communicating with an offline storage system
° e | di caching
writing to an external storage medium size & complexity of models,
® reading from the external storage medium details of storage technology
reloading

¢ communicating with the offline storage system
¢ Reloading a cached version may or may not be cheaper than re-computation!

Performance and Scalability of Datastore Technologies for Software Analysis Models

ACCSE 2023

2023-06-24

Dimensions of Consideration

¢ Datastore technologies
® Flat files: simple text; comma-separated values (CSV); JSON
® Relational database management systems: e.g., MySQL, PostgreSQL, etc.

® Non-relational database systems: NoSQL; graph databases (e.g., Neoj); cloud storage
(e.g., Google Cloud)

¢ Datasets
® Academic studies tend to utilize toy datasets, constructed from random graphs

® Non-academic studies tend to suffer from potential bias

® Use cases

¢ SDATs use graphs, so graph-based operations should be studied

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 6

2023-06-24

Our Study (1/4)

® Research question: How do different database technologies perform on realistic
operations over realistic software analysis models?

® Many details in the paper

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 7

2023-06-24

Our Study (2/4)

® The technologies we chose to examine:

® (SVfiles via the Python-based NetworkX library
° MySQL

¢ PostgreSQL

® Neoyj

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models

2023-06-24

Our Study (3/4)

® We generate nine scale-free graphs via the Barabasi—Albert model
® linear preferential attachment model (“the rich get richer”)
® probability of adding an edge with a node is proportional to local degree of connectivity
® two dimensions
® #nodes: 100, 1 000, and 10 000
® density: 2%, 10 %, 25%
® We used a custom Python implementation based on the NetworkX library to
generate these

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 9

2023-06-24

Our Study (4/4)

® We examine 8 use cases

® (UCa) Create/store a graph

® (UC2) Read/access a graph

® (UC3)Add anode

® (UC4) Add an edge

® (UCs) Rename an edge

® (UC6) Change source and target nodes of an edge
® (UCy) Delete a node

¢ (UC8) Delete an edge

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 10

10

10

UCa: Create/Store a Graph

10° { =% Python-CSV
== MysoL
£ Neod)
10° { == FPostgreSQL

Time in ms

il 10°

10* 10* 10°
Edge count

107

10°

10°

Performance and Scalability of Datastore Technologies for Software Analysis Models

—=- Python-CSV [m]
=== MysSQL -7
-=- Neod) T
-=-- PostgreSQL Pt e |
- -
L= o=
"_.El‘ 9'§$
[m] ”""D -""
- ‘.."
-
L
sl
-
3"
1 10 10° 107

Edge count

ACCSE 2023 11

11

2023-06-24

2023-06-24

12

Time in ms

10*

UC2: Read/Access a Graph

=%~ Python-CSV
* MysQL

B+ Neod)

¢ RostgreSQL

107
Edge count

Time in ms

10¢

10°

10?

10°

Performance and Scalability of Datastore Technologies for Software Analysis Models

=== Python-CSV
=== MySQL
=== Neod|

=== PostgreSQL

10¢ 10° 10° 107
Edge count

ACCSE 2023 12

12

2023-06-24

UC3: Create a Node without Edges

5 Aython-CSV 10¢ { === Python-CSV v ¥
101 & msa e R ? -
B Neodf o%u Nesd L
¢ PostgreSQL e0d) P
10° 10° { === PostgreSQL L
.
w w LY
€ £ 2| (OEEEEEES OO mmmm ey Qe)
& © =
vy 10° / v Hemmmmme P e e x====X
£ e £

10! o
B----- G e e Ao gr---8
t”,
10°1{ -7
102 100 10¢ 10° 10° 1w 10¢ 10° 10° 107
Edge count Edge count
Performance and Scalability of Datastore Technologies for Software Analysis Models ACCSE 2023 13

13

13

2023-06-24

14

UC4: Create an Edge between Existing Nodes

Time in ms

10¢

10°

== Python-CSV
-6~ MysoL
£ Neod)
¢ PostgreSQL

" ~N

10° 10° 10¢ 10° 10° 107
Edge count

Time in ms

10¢

10°

10*

Performance and Scalability of Datastore Technologies for Software Analysis Models

=== Python-CSV v

=== MySQL

-== Neod) V-

=== PostgreSQL Pl

G------- GO mmmeE i e B)

MHmm—————— ac-:;rg- --------- W mmm——— ==X
4"" v

v

g--=---- e g----0

10* 10° 10° 107

Edge count

ACCSE 2023 14

14

2023-06-24

UCs

: Rename a Node

== Python-CSV
€ MysoL
10t B Neod)

=4é= PostgreSQL

. 10°

E

=

g

g 107

10°

10* 10°
Edge count

=== Python-CSV ’y
=== MysaL e
0] --- Neod) ‘."V
--- PostgresQL ’D/,
E 107
€
E -
Pt —r------- e---0
- wl TR
L e === A= ———— -
v
10! { Bommmmmmgpmmm BT B e o---8
16" 1(;’ 10* 10° 100 o
Edge count
Performance and Scalability of Datastore Technologies for Software Analysis Models ACCSE 2023 15

15

15

2023-06-24

UC6: Change Source & Target Nodes
.
=%~ Python-CSV -=- Python-CSV v
- MysaL — -~
"2 E of o
T Pestgresal === PostgreSQL ,a”
10° R
g g 10° L
c £ -
u © w -
& < " 5 -—g------- &----0
107
Hemmm e X
w1 PR —
O T W 10 w0
Edge count Edge count
Performance and Scalability of Datastore Technologies for Software Analysis Models ACCSE 2023 16

16

16

2023-06-24

UC7: Delete a Node and
Its Corresponding Edges

=%~ Python-CSV
10¢ { =©- WysQL
-5 Neod)
¢ PostgreSQL

10°

Time in ms

10°

10* 10° 10° 107
Edge count

Time in ms

10°

107

10*

Performance and Scalability of Datastore Technologies for Software Analysis Models

=== Python-CSV ,/V
- MySQL P
=== Neod) 5
~-== PostgreSQL Al
greSQl w-
»
/’,’
L O LB B ===
D R T e Wemmmmnn— o
v,
v
8 g Beefbeoiosiads o k==
10¢ 10° 10° 107
Edge count

ACCSE 2023 17

17

17

2023-06-24

=~ Python-CSV
10¢ { & mysaL 104
B Neod)
~a¢= PostgreSQL
10° 100
£ £
c S
o © o
5 E 10
100
P _ oy 3]
=
10° 10* 10° 10° 107
Edge count

UC8: Delete a Specific Edge

=== Python-CSV
=== MySQL

=== Neod)

=== PostgreSQL

Edge count

Performance and Scalability of Datastore Technologies for Software Analysis Models

ACCSE 2023 18

18

18

2023-06-24

Conclusions

® For creating/storing a graph, Python-CSV is the clear winner
For reading a graph, PostgreSQL is the best option for large graphs
® For the other 6 use cases, Neosj is the best option for large graphs

The correct choice would depend on the profile of the application

¢ HOWEVER...

® This study did not consider the cost of the connector technology needed for programmatic
access to core-memory representations; this can be EXPENSIVE

® Afarsimpler approach, like object serialization, could suffice for caching/reloading where
external manipulation of the graphs is not needed

¢ Additional study is needed to determine the comparative, full costs for both issues

ACCSE 2023 Performance and Scalability of Datastore Technologies for Software Analysis Models 19

19

19

2023-06-24

THANKYOU

Prof. Robert J. Walker, walker@ucalgary.ca

Performance and Scalability of Datastore Technologies for Software Analysis Models ACCSE 2023 20

20

	Slide 1: Performance and Scalability of Datastore Technologies for Software Analysis Models
	Slide 2: Software Systems Change over Time
	Slide 3: Software Development & Analysis Tools (SDATs)
	Slide 4: Size versus cost
	Slide 5: Caching versus Re-computation
	Slide 6: Dimensions of Consideration
	Slide 7: Our Study (1/4)
	Slide 8: Our Study (2/4)
	Slide 9: Our Study (3/4)
	Slide 10: Our Study (4/4)
	Slide 11: UC1: Create/Store a Graph
	Slide 12: UC2: Read/Access a Graph
	Slide 13: UC3: Create a Node without Edges
	Slide 14: UC4: Create an Edge between Existing Nodes
	Slide 15: UC5: Rename a Node
	Slide 16: UC6: Change Source & Target Nodes of an Edge
	Slide 17: UC7: Delete a Node and Its Corresponding Edges
	Slide 18: UC8: Delete a Specific Edge
	Slide 19: Conclusions
	Slide 20: THANK YOU

