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Introduction
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Goals Contributions

• More than 90% recognition rate can be obtained. 

• Calorie estimation error is less than 10%.

• Train a YOLO model for food.

• Maximize usage data.

• Calorie Estimation.



Hardware
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Raspberry Pi Item

CPU ARM Cortex-A72 (ARMv8) 1.5GHz 

GPU H.265 (4Kp60), H.264 (1080p60 / 1080p30)，OpenGL ES 

3.0

Memory 2/4/8 GB (LPDDR4-3200)

USB USB 3.0 *2、USB 2.0 *2

Depth Camera Item

RGB FOV(H×V) 69°×42°(±1°)

Depth resolution 1280×720

RGB resolution 1920×1080

Min depth distance 0.105m

Max depth distance 10m



Data Acquisition
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• In this work, a food dataset named Food-101 is used, which contains a large number of images.

• The pictures collected by myself, a total of 400 photos in 4 categories, including: rice, eggs, shrimp,    
broccoli, etc.

• Collect as many pictures of different angles and light as possible.



Yolo v5
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• The YOLO (YouOnly Look Once) algorithm was originally proposed by Joseph Redmon.

• In YOLO v5, its author Glenn Jocher gave a total of four versions of the target detection network, divided 
into Yolov5s, Yolov5m, Yolov5l, Yolov5x. Compared with YOLO v4, YOLO v5 will reduce the size Reduced by 
90%.

• On Tesla P100 YOLO v5 claims that it can achieve 140FPS fast detection, YOLO v4 The results are obtained 
at 50FPS, but the accuracy of the two is almost the same.



Volume Estimation
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• Using yolov5 label the food type and record the coordinates.

• Depth images of pre- and post-meal food are recorded,  and the depth 
difference for each pixel on the image is calculated. The depth difference of 
each point is the height of the actual height.

• The pixels go through linear regression to find the actual area of each pixel. 
Finally, sum and integrate all depth differences to get the true volume of 
the food. 



Calories Estimation
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• For the convenience of calculation Calories of food, need to know the weight 

of the food, the density formula is used for Convert volume to weight, and 

density of each food obtained by the drainage method. Every food has one 

Density is different. Finally, convert calories and Get the three nutrients from 

food.



Image recognition Results
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A B

• We randomly select 10 images from the dataset and use our trained model to identify 

them with an average accuracy of over 90% for individual food items, The recognition rate 

of recognition is shown. The recognition rate is above 93%.

• The trained loss function is below 0.01.



Calorie Estimation Results
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A B

• This result is the same as the previous experiment, we randomly select 10 images from 

the dataset and use our model to estimate the calories of the food, record the real weight 

and the estimated weight, average all the recorded weights and calculate the error. has an 

error of less than 10%, which means that the calorie error will also be less than 10 calories.



Conclusions
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• Results show that it is feasible to use depth cameras for image recognition and calorie 

estimation.

• Uses a depth camera for image recognition and calorie estimation of the food, more 

than 90% recognition rate can be obtained.

• In most cases, while the heat estimation error is less than 10%.



Future Work
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Experiment

• Increased experimental volume to 

increase experimental confidence.

Technology

• Increase the recognition rate and the types of 

recognition.

• Reduce errors in calorie estimates.
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