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Introduction to Morehead Station
• Located at Morehead State University, Morehead, Kentucky, US

• Built in 2005 in support of LEO Cubesats and educational space research

• Upgraded for near Earth and deep space communications with Artemis 1 cubesats
– Implementation started 2015; Operational in 2021
– Full telemetry, tracking and command (TTC) capabilities
– Primarily at X-band (8 GHz) as required for Artemis Cubesat support

• S-band (2 GHz) capable, with feed switching

Morehead antenna (21-m) DSN antennas (34-m/70-m)

Lunar IceCubeLunar H-map CuSP
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Mission Drivers
Project Description and Objectives
Demonstrate a cost-effective process for expanding DSN capabilities by 
utilizing non-NASA assets to provide communication and navigation 
services to Cubesat missions to the Moon and inner solar system, thereby 
enabling interplanetary research with small spacecraft platforms

DSS-17’s operational philosophy: "A Class-D Ground Station Supporting 
Class D Interplanetary CubeSats"

Technical Approach
• Develop and implement a strategy to transfer Deep Space Network

(DSN) equipment, processes and protocols to the MSU 21 m antenna
system to enable integration into the DSN as an auxiliary station to
support small spacecraft missions

• Implement deep space communications, tracking and navigation
techniques as well as adoption of CCSDS standards

• Implement systems upgrades, conduct tests/demonstrations, and
transition to an operational capability

Benefits
• Serves as a test-case for other non-NASA ground stations to provide

auxiliary deep space navigation and tracking support for
interplanetary small spacecraft missions

• Serves as an Experimental Station for Advanced DSN Communications
Experiments

• Serves as a DSN node, transparent to missions being supported

Targets
Full DSN compatibility
Scheduled by DSN
Support CCSDS-SLE
DSN Tracking and Ranging
Support Lunar, NEA, Lagrange point 
missions

Morehead DSN antennas

Mission 
Operation Center

Lunar IceCube Lunar H-map NEO Scout
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Implementation Objectives

• Upgrade MSU 21-m antenna to 
support Lunar IceCube and other 
EM-1 Cubesats
– X-band operations

• Deep space and near Earth
– Full TTC functions

• 3 kW power amplifier
– Deep space specialization

• Highly efficient FEC (e.g., 
turbo code, LDPC)

• Pseudo-noise/sequential 
ranging

– Interoperability with DSN and 
CCSDS compliant
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System Attributes
• Minimize implementation cost

– Leverage on DSN-developed equipment
• Specialized deep space signal processing 

for telemetry, ranging and commanding
• Adapt the already-built equipment to only 

necessary functions
– Implement rest of system with COTS 

equipment
• With new and surplus components

• Adopt common user interfaces
– Data delivery at JPL, as with other DSN 

antennas
• Create opportunity for student-developed projects

– Station monitor & control
– System integration and testing
– Equipment operations

X-band Feed 
and LNA

DSN 
Equipment

Hydrogen
MASER
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System Architecture

!

Hydrogen MASER

“Lite” 
Version of 
DSN Exciter 
and Receiver 
developed 
for 
Morehead 
State

Morehead State  21 m 
Antenna System

Updated Cryogenic X-Band Feed

Deep Space Operation Center- JPL Mission Control

21 m Antenna Control System

Morehead State University 
Mission Operations Center
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System Performance

Performance Measure Pre-Upgrade Post-Upgrade

X-Band Frequency Range 7.0 – 7.8 GHz 7.0 – 8.5 GHz
LNA Temperature 70 K < 20 K

System Noise Temperature 215 K <100 K
Antenna Gain 62 dBi (@7.7 GHz) 62.7 dBi (@8.4 GHz)

System Noise Spectral 
Density

-175 dBm/Hz <-178 dBm/Hz

G/T at 5° Elevation 37.5 dB/K 40.4 dB/K
Time Standard GPS (40 ns) Hydrogen maser (1 ns/day)

EIRP N/A 93.7 dBW
HPBW 0.124 deg 0.115 deg

CCSDS Compliance N/A Yes

Forward Error Coding
Reed Solomon/Convolutional Reed Solomon/Convolutional, 

Turbo, Low Density Parity 
Check

Radiometric Angle, Doppler Angle, Doppler, Ranging
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1. Station internal tests 
2. Spacecraft shadow tracks
3. Simulated space link tests
4. Ground data system tests

Incremental Test Approach
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• Initial checkout, post installation of Exciter and Receiver, to validate signal processing
• Exciter-to-Receiver loopback via 300 MHz IF 
• Exciter-to-Receiver loopback with built-in Test Translator (emulating spacecraft) at 8 GHz RF 

Validate integrity of ranging signal generation and reception (ranging calibration)
• Validated integrity of command signal generation

Station Internal Tests

UPL

DTT DCD

SPS

DCD

MOC

TXR

LNA & 
RF/IF 

ANT

MSU equipment at MSU DSN-supplied equipment at MSU
Deep Space Operation Center 

at JPL Missions 

IF/RF & 
Translator
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TLM data
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spacecraft events

& link configuration,
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schedule
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Doppler,
link 
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tracking 
schedule

TRK data
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M&C Predicted 
Doppler 
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Predicted 
Doppler & 
configuration

TRK data

TLM data
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signal

M&C

TRK data

M&C
Pointing
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• Riding on normal DSN passes without impacting missions
• With various X-band deep space missions, e.g., STEREO-A, Osiris REX, Hayabusa 2, Lucy, DART

• No near Earth X-band mission currently operational and tracked by the DSN
• Telemetry validation

• Validated key antenna Gain/Temp (G/T) performance 
• Comparison of telemetry and carrier SNRs received at DSN and MSU antennas
• 10 dB in expected G/T difference between two antennas observed

• Ranging validation
• Validated ranging functions of MSU downlink via 3-way ranging with STEREO-A, DART

• Uplink ranging signal transmitted by DSN antenna in 3-way mode
• 2-way ranging at Morehead not done due to lack of mission support for 

Morehead uplink and spectrum license issue in deep space frequency band 
• Command validation

• Not achieved because requiring missions willingness to support MSU uplink

Spacecraft Shadow Tracks
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DSS-17 
Ranging 
Results-
precision within 
+/-1 range unit 
(0.94 
ns). Implies 1 
meter accuracy 
ranging at the 
Moon

10 dB difference 
in SNR 
observed 
between 21-m 
MSU (DSS-17) 
and 34-m DSN 
antenna (DSS-
24), as 
expected
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• Simulated space link condition via local air link between antenna and signal processing site
• Use two additional test horn antennas, and other test equipment, to emulate spacecraft 

transmit/receive antenna 
• RF signal travels across 1 km air link between Exciter/Receiver and the antenna 
• Command data test

• LIC MOC ->  DSS-17 -> air link -> test feed -> LIC spacecraft 
• Telemetry data test

• LIC spacecraft -> test feed -> air link -> DSS-17 -> receiver -> LIC MOC
• Ranging (2-way) test 

• DSS-17 Exciter & Transmitter -> air link -> test feed -> DSS 17 Receiver 

Simulated Space Link Tests
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DCD
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Pointing

Received Test
Horn
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Transmitted 
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• GDS testing with Lunar IceCube, HMAP, CAPSTONE, CuSP, NEAScout
• Verify data flow between Mission Operation Centers and MSU ground station

• Telemetry & Command data - with standard CCSDS Space Link Extension (SLE) interfaces
• Tracking data – with DSN specific interface

• Workaround with generation of simulated spacecraft data
• Lack of equipment to emulate spacecraft telemetry data is mitigated by use of SDR-

based recorder/playback of pre-recorded IF samples of test signal waveform
• Successful for most data rates but a few low data rate configurations had problem with 

data not being decoded
• Saturation issue due to higher bit/symbol SNR?

• End-to-end test with spacecraft in development
• Lunar IceCube done with actual LIC flight system since Morehead also responsible for LIC

• Also done via local air link

Ground Data System Tests

UPL

DTT DCD

SPS
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• End-to-end test involved Lunar Ice Cube spacecraft, ground station and Mission Operation Control
• Test done with actual LIC flight system since MSU is also responsible for LIC development

Flight & Ground Systems End-to-End Tests
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• Incremental test approach, from a small portion to the entire system, helps:
• Building confidence on system operation
• Providing training opportunity to operation team

• Operational team was able to successfully transfer knowledge across multiple 
generations of students

• Graduating students willing to share & teach. New students eager to learn 
• Converting key students to operation staff upon their graduation helps 

solidifying operational knowledge; thus, ensure mission success

• Making an operational ground station requires much dedication and resources
• Strong project management and dedicated key technical staff
• Funding resource to develop and maintain operational capabilities

Lessons Learned
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Summary
• Implementation of ground station at Morehead State University

– Supporting Artemis 1 Cubesat missions, at X-band
• A hybrid architecture 

– Combining DSN and COTS equipment
– Common interfaces for missions that use both DSN and Morehead

• Incremental test approach builds up confidence of system operations from 
smaller segment to end-to-end system

• System is now ready to support Artemis 1 Cubesats, to be launched in 2022


