STP-Net: Semi-Tensor Product Neural Network for Image Compressive Sensing

Youhao Yu, Richard M. Dansereau

Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada

e-mail: <u>youhaoyu@sce.carleton.ca</u>

rdanse@sce.carleton.ca

1. Compressive sensing (CS)

- Reconstructs a signal from far fewer samples than the Shannon-Nyquit sampling theorem.
- Finds solutions through optimization.
- Relies on **sparsity** and **incoherence**.

2. Semi-tensor product (STP)

• If
$$A \in \mathbb{R}^{m \times n}$$
 and $B \in \mathbb{R}^{p \times 1}$, $nt = p$, then

 $A \ltimes B = (A \otimes I_t)B \qquad \in \mathbb{R}^{mt \times 1}.$

• Reshape:
$$\begin{cases} B \in \mathbb{R}^{nt \times 1} \implies B_r \in \mathbb{R}^{t \times n}. \\ A \ltimes B \in \mathbb{R}^{mt \times 1} \implies (A \ltimes B)_r \in \mathbb{R}^{t \times m}. \end{cases}$$

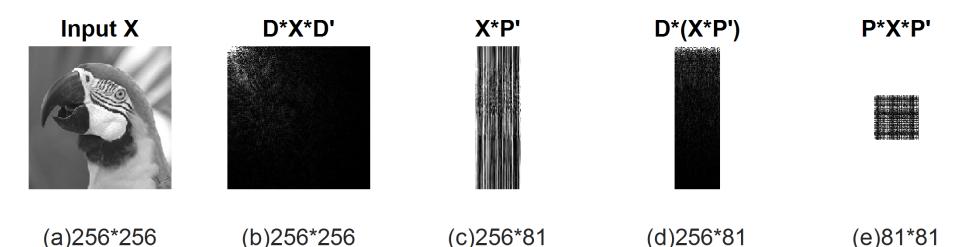
- Then, $(A \ltimes B)_r = B_r A^T \in \mathbb{R}^{t \times m}$.
- Application: view B_r as an image and A as the measurement matrix for CS.

3. Example

- Image size: 256×256 (65536 pixels); Sampling rate: 1% (655 measurements).
- Measurement matrix $\Phi \in \mathbb{R}^{655 \times 65536}$ (needs more than 300 MB of memory to store).

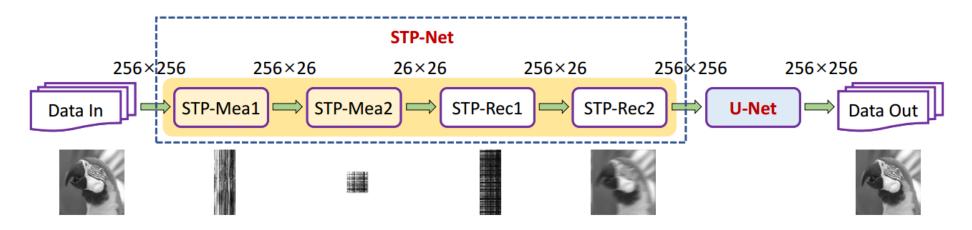
- According to the STP method:
 - If t is 256, then Φ with size *ceiling*(256×1%)×256 can be used.
 - only needs 6 kB of memory.

4. Minimum energy reconstruction (MER)

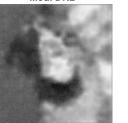

---often used as initial reconstruction

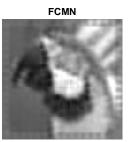
- If $\Phi \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^{m \times 1}$, MER of $\Phi x = y$ is the solution of $\Phi^T \Phi x = \Phi^T y$.
- If Φ has orthonormal rows, then MER = $\Phi^T y$

• STP maintains the property:


- If $y = \Phi(t) \ltimes x$, MER = $\tilde{x} = [\Phi(t)]^T \ltimes y$
- Written in matrix form: $\tilde{X} = Y \cdot \Phi(t)$

- Figure 1. Image measurements and sparsity
- (a) original image, (b) 1D sparsifying basis D applied along rows and columns,
- (c) measurement of (a) using random matrix *P*, (d) result showing measurement is still sparse, and (e) image sampled along rows and columns.
- Sampling rate = $(81/256)^2 \approx 10\%$.


• Figure 2. STP-Net connected with U-Net for deblurring (Sampling rate:1%)


Parrot

Modi-DR2

SSIM:0.5197, PSNR:19.18dB

SSIM:0.6494, PSNR:20.12dB

FC-Res

SSIM:0.6537, PSNR:21.42dB

B SSIM:0.7145, PSNR:22.17dB

SSIM:0.7512, PSNR:22.96dB

STP-Unet

Original

Original

SSIM:0.4059, PSNR:17.24dB

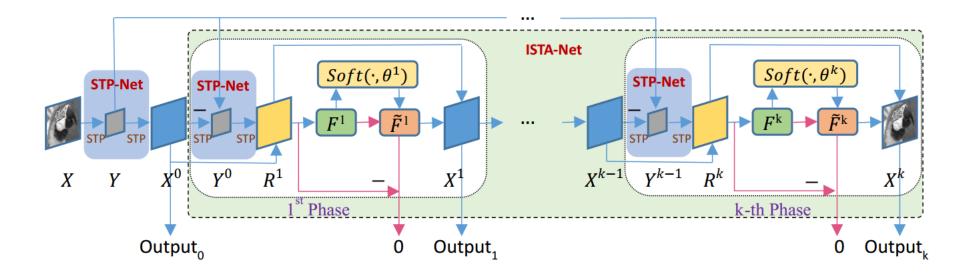
SSIM:0.5206, PSNR:19.07dB

SSIM:0.5344, PSNR:19.45dB

SSIM:0.5540, PSNR:20.48dB

SSIM:0.6242, PSNR:21.28dB

• Figure 3. Reconstruction results for parrot and pepper from noiseless CS measurements at measurement rate of 1%.



5. Iterative shrinkage thresholding algorithm (ISTA)

•
$$r^{(k)} = x^{(k-1)} - \rho \Phi^T (\Phi x^{(k-1)} - y)$$

• $x^{(k)} = \arg \min_x \left\{ \frac{1}{2} \| x - r^{(k)} \|_2^2 + \lambda \| \Psi x \|_1 \right\}$

• where k is the ISTA iteration index, $\rho \ge 0$ is the step size. The first equation is essentially the gradient descent method that contracts the immediate reconstruction along the gradient of the data fidelity term.

• Figure 4. Connect STP-Net with ISTA-Net and use STP layers for measurement and reconstruction in every phase

Image Name	ReconNet +BM3D [13]	DR ² -Net [14]	DR ² +BM3D [14]	Modified DR ² -Net [14]	FCMN [16]	FC-Res [16]	STP-Net	STP-UNet
Barbara	19.08	18.65	19.10	19.02	20.38	20.97	21.83	22.10
Boat	18.83	18.67	18.95	18.82	19.96	20.57	21.46	22.23
Cameraman	17.49	17.08	17.34	17.72	19.16	19.68	20.14	21.25
Fingerprint	14.88	14.73	14.95	14.92	15.56	15.83	16.16	16.16
Flintstones	14.08	14.01	14.18	13.29	14.46	14.77	15.28	15.37
Foreman	20.33	20.59	21.08	22.54	21.08	23.72	27.15	27.00
House	19.52	19.61	19.99	20.61	20.93	22.38	23.16	24.47
Lena	18.05	17.97	18.40	18.51	20.49	21.15	21.95	22.72
Monarch	15.49	15.33	15.50	15.52	17.20	17.58	18.28	18.79
Parrot	18.30	18.01	18.41	19.18	20.12	21.42	22.17	22.96
Pepper	16.96	16.90	17.11	17.24	19.07	19.45	20.48	21.28

Table I. PSNR Values in dB on Set11 with Different Algorithms at 1% Measurement Rate

• (For ReconNet, we use the results reported in [13]. For DR²-Net and DR²+BM3D, we use the results reported in [14]. For the other algorithms, the experiments use MATLAB with networks trained from the same dataset with the same images.)

TABLE II. SSIM VALUE FOR 11 EXTRA IMAGES

Image Name	ReconNet [13]	Modified DR ² -Net [14]	FCMN [16]	FC-Res [16]	STP-Net	STP-UNet
Barbara	0.3730	0.3578	0.4555	0.4575	0.5024	0.5271
Boat	0.4140	0.3838	0.4729	0.4771	0.4950	0.5587
Cameraman	0.4517	0.4391	0.4998	0.5389	0.5503	0.6565
Fingerprint	0.1641	0.0708	0.0853	0.0858	0.0884	0.0886
Flintstones	0.2733	0.1789	0.2386	0.2429	0.2580	0.2871
Foreman	0.5647	0.6078	0.6680	0.6849	0.7536	0.7869
House	0.5278	0.5282	0.5809	0.5948	0.6291	0.7056
Lena	0.4418	0.4344	0.5364	0.5489	0.5765	0.6324
Monarch	0.3802	0.3427	0.4683	0.4816	0.5003	0.5578
Parrot	0.5329	0.5197	0.6494	0.6537	0.7145	0.7512
Pepper	0.4002	0.4059	0.5206	0.5344	0.5540	0.6242
Mean SSIM	0.4112	0.3881	0.4705	0.4819	0.5111	0.5615

• (For ReconNet, we calculate the values of SSIM from the images the authors provide.)

TABLE III. RESULTS OF 3000 TEST IMAGES

Evaluation index			FC-Res [16]	STP-Net	STP-UNet
Mean SSIM	0.3696	0.4347	0.4563	0.4911	0.5301
Mean PSNR	18.72	19.26	20.45	21.50	22.06
Elapsed Time(s)	56.62	10.70	22.02	9.36	41.33

• (The number in the table are the mean of 10 experiments.)

TABLE IV. AVERAGE PSNR (DB) PERFORMANCE COMPARISONS ON SET11 WITH DIFFERENT CS RATIOS

Sampling rate	ReconNet +BM3D [13]	DR ² -Net [14]	DR ² +BM3D [14]	FCMN [16]	FC-Res [16]	ISTA-Net [18]	ISTA-Net+ [18]	STP-Net	STP-ISTA- Net
1%	17.55	17.44	17.73	18.95	19.77	17.30	17.34	20.65	21.30
4%	20.44	20.80	21.29	23.14	24.22	21.23	21.31	23.39	24.92
10%	23.23	24.32	24.71	25.36	27.30	25.80	26.64	26.02	28.65
25%	25.92	28.66	29.06	28.69	31.15	31.53	32.57	30.06	33.54

• (The best performance is labeled in bold.)

6. Conclusion

- Present an STP-based neural network to CS image reconstruction.
- Efficient (without dividing the image into blocks and vectorizing).
- Superior quality reconstructions at different measurement rates.
- Does not have block artifacts
- Provides good initial reconstruction for subsequent network (U-Net or ISTA-Net).

End. Thank you.

